
Model Checking and Gas Optimization of Move Smart Contracts,
and Transaction Order Dependency Detection and Rectification

by

Eric Keilty

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical & Computer Engineering
University of Toronto

© Copyright 2023 by Eric Keilty

Model Checking and Gas Optimization of Move Smart Contracts, and Transaction Order
Dependency Detection and Rectification

Eric Keilty
Master of Applied Science

Graduate Department of Electrical & Computer Engineering
University of Toronto

2023

Abstract

Blockchain technology has revolutionized various industries by providing secure transaction mech-

anisms in a decentralized, trustless environment. In 2014, the Ethereum blockchain platform intro-

duced smart contracts, facilitating the deployment of a wide range of decentralized applications.

However, since its inception numerous vulnerabilities have been discovered in the Ethereum Virtual

Machine, many resulting in significant financial loss. Consequently, a new smart contract language,

Move, has been developed, where security and verifiability are first class features. As the adoption

of Move increases, it necessitates robust developer tools and adherence to best practice principles,

similar to the existing infrastructure present in Ethereum. This thesis contributes to the advance-

ment of this goal. First, it introduces VeriMove, the first model checking framework for the Move

language. Experiments show that model checking is a feasible method to formally verify global

properties in Move smart contracts. Second, this thesis presents the first gas optimization analysis

of the Move language. Experiments show that the proposed gas optimization patterns reduce gas

consumption in a typical smart contract by 7�56%. Lastly, this thesis proposes a novel algorithm to

automatically audit the transaction order dependency vulnerability present in many popular public

blockchain platforms. A prototype implementation is developed on Ethereum for the Solidity smart

contract language. Experiments show that the proposed methodology can be used successfully to

detect and rectify such vulnerabilities, or to certify their absence.

ii

Acknowledgements

I am extremely lucky to have met an abundance of amazing people throughout my degree,

without whom this thesis would not have been possible. First and foremost I extend my gratitude

towards my supervisor Professor Andreas Veneris. I am deeply thankful for his guidance both in

research and in life.

Thank you to my defense committee members Professor Fan Long and Professor Hans-Arno

Jacobsen for generously giving their valuable time to analyze and refine my work. Likewise, thank

you my defense committee chair Professor Frank Kschischang for his time and encouragement.

I am fortunate to have been part of a stellar group, surrounded by incredible colleagues. To

Keerthi Nelaturu, thank you for your mentorship and collaboration throughout my research, and

for being a fun travel companion. To Panagiotis Michalopoulos, thank you for all of your help in

organizing and running the courses ECE345 and ECE358, and for being a kind and reliable person.

To Srisht Fateh Singh, thank you for proof reading all of my work and your advice in academic

writing. Above all else, to each of you, thank you for being great friends.

Finally, to my family, partner, and friends, your love and support means so much to me. Without

you all, I would not be who I am today.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.2.1 VeriMove: A Model Checking Framework for the Move Language 2

1.2.2 Gas Optimization of Move Smart Contracts 2

1.2.3 Automated Auditing of Price Gouging TOD Vulnerabilities 3

1.3 Thesis Outline . 3

2 Background 4

2.1 Introduction . 4

2.2 Blockchain . 4

2.2.1 Properties of Cryptocurrency and Early Systems 4

2.2.2 Blockchain Fundamentals . 5

2.2.3 Block Contents . 7

2.2.4 Consensus Algorithms . 7

2.3 The Ethereum Blockchain . 8

2.3.1 Accounts . 8

2.3.2 Smart Contracts . 9

2.3.3 Gas . 9

2.4 The Move Language . 10

2.4.1 Global Ledger State . 10

2.4.2 Smart Contracts . 11

2.4.3 Memory Management . 11

2.4.4 Struct Abilities . 12

2.4.5 Resources . 13

2.4.6 Built-In Verification . 13

2.5 Formal Methods . 14

2.5.1 Theorem Proving . 14

2.5.2 Model Checking . 16

3 VeriMove: A Model Checking Framework for the Move Language 18

3.1 Introduction . 18

3.2 Related Work . 19

3.3 Comparison of Move and Solidity . 20

iv

3.3.1 Global Storage and Local Memory Management 20

3.3.2 Transfers . 20

3.3.3 Trade-O↵s . 21

3.4 Blind Auction: A Motivating Example . 21

3.5 VeriMove: Design and Verification Workflow . 23

3.5.1 VeriSolid . 23

3.5.2 Language Parser . 23

3.5.3 Finite State Machine Generator . 23

3.5.4 Augmented Transition System . 25

3.5.5 VeriMove Workflow . 25

3.6 Operational Semantics for Move . 26

3.7 Empirical Evaluation . 27

3.7.1 Implementation . 27

3.7.2 Experimental Setup . 27

3.7.3 Results . 27

3.7.4 Discussion and Limitations . 28

3.8 Conclusion . 28

4 Gas Optimization of Move Smart Contracts 29

4.1 Introduction . 29

4.2 The Aptos Gas Meter . 30

4.2.1 Payload Gas . 30

4.2.2 Instruction Gas . 31

4.2.3 Storage Gas . 31

4.3 Related Work . 33

4.4 Gas Optimization Patterns . 34

4.4.1 Payload Gas . 34

4.4.2 Instruction Gas . 34

4.4.3 Storage Gas . 35

4.5 Non-optimization . 36

4.6 Experiments . 37

4.7 Conclusion . 38

5 Automated Auditing of TOD Vulnerabilities 39

5.1 Introduction . 39

5.2 Background and Motivating Example . 40

5.2.1 The Cause of a TOD Vulnerability . 40

5.2.2 The Price Gouging TOD Vulnerability . 40

5.2.3 Locating TOD Vulnerabilities . 41

5.2.4 Rectifying TOD Vulnerabilities . 41

5.3 Analysis Approach . 42

5.3.1 Location Algorithm . 42

5.3.2 Rectification Algorithm . 42

5.4 Empirical Evaluation . 43

v

5.4.1 Implementation and Experimental Setup . 43

5.4.2 DataSet Collection . 43

5.4.3 Results . 43

5.4.4 Limitations and Discussion . 45

5.5 Related Work . 45

5.5.1 Analysis of Smart Contracts . 45

5.5.2 Automated Repairs of Smart Contracts . 45

5.5.3 Functional Verification of Smart Contracts 45

5.6 Conclusion . 46

6 Conclusion and Future Work 47

6.1 Contributions . 47

6.2 Future Work . 48

vi

List of Tables

3.1 Verification Performance of VeriSolid . 27

3.2 Verification Performance of VeriMove . 28

4.1 Storage Gas Fees . 32

4.2 Gas savings comparison of optimization patterns . 38

5.1 Empirical Results of TOD Rectification . 44

vii

List of Figures

2.1 A Simplified Example of a Blockchain . 6

2.2 The Global Ledger State of Move . 10

2.3 Global Ledger State of Ethereum . 11

2.4 Value Ownership Transfer Example . 12

2.5 No Ability Struct Example . 12

2.6 Resource Create, Destroy, Read, and Write . 13

2.7 Model Checking Overview . 16

2.8 Transition System - Vending Machine Example . 17

3.1 Blind Auction Transition System . 22

3.2 Withdraw Function Move Implementation . 24

3.3 Augmented Model of the withdraw Transition . 24

3.4 Design and Verification Workflow . 25

4.1 Aptos’s Old (left) and New (right) Utilization Curves for Global Storage Accesses . . 33

4.2 Short Circuit . 35

4.3 Loop Refactor - Operating on Local Variables . 36

4.4 Variable Packing . 36

4.5 Resource Update . 37

5.1 Example of the Price Gouging TOD Vulnerability (left) and its Rectification (right) 41

viii

Chapter 1

Introduction

1.1 Motivation

Blockchain technology has revolutionized various industries by providing secure transaction mech-

anisms in a decentralized, trustless environment. Smart contracts, in particular, have emerged as

a powerful application of blockchain technology, enabling self-executing, tamper-proof agreements

without the need for intermediaries. The Ethereum platform [27] is at the forefront of the smart con-

tract revolution, facilitating the deployment of a wide range of decentralized applications (DApps).

Since its inception in 2014, numerous vulnerabilities have been discovered in the Ethereum

blockchain [82, 131, 154]. The infamous DAO hack took advantage of the reentrancy vulnera-

bility [135], resulting in over 3.6 million ETH (60 million USD at the time) being drained from the

DAO smart contract [159, 165]. The impact was so significant that the community hard-forked the

Ethereum blockchain to revert the attack [28]. The Parity Multisig Wallet hack resulted from a mis-

use of the delegatecall function causing all public functions in the WalletLibrary to be callable

by anyone. This gave attackers unauthorized access control over specific multisig wallets, allowing

them to transfer over 15, 000 ETH (30 million USD at the time) to their own wallets [126, 127]. In the

BeautyChain contract, the batchTransfer function contained an unchecked arithmetic operation.

As a result, the attacker used a batch-overflow attack (or more generally an integer-overflow attack)

to trick the smart contract into minting a large number of tokens rather than only a few [19, 125].

Given the immutable nature of blockchains, rectifying vulnerabilities in DApps is considerably

more challenging and thereby increases the associated risks when compared to traditional software

applications, evident by the significant financial loss in the aforementioned examples. Ethereum

has made e↵orts to mitigate these vulnerabilities through patches, updates, and best practices

guidelines [141, 157]. Furthermore, researchers have developed numerous tools to detect security

vulnerabilities in Ethereum smart contracts [56, 81, 89]. Using the above attacks as case-studies,

the reentrancy attack is checked by almost every vulnerability detection tool. Best practice guidelines

urge developers to only use call when interacting with external contracts, only using delegatecall

when absolutely necessary. Finally, OpenZeppelin [122] created the SafeMath library [123], which

prevents arithmetic-related vulnerabilities, including integer overflow. However, even this library

has been patched due to unforeseen vulnerabilities [109].

Unfortunately, these vulnerability prevention measures will never be su�cient. The design of

1

CHAPTER 1. INTRODUCTION 2

Ethereum and the mechanism of asset transfer via the fallback function is fundamentally insecure.

As the adage goes: security cannot be bolted on, it must be built in. The security and verifiability

of a smart contract should be a feature enforced by design, rather than an after-the-fact addition

dependent on the developer. This is the philosophy that inspired the Move language [23].

In Move, many of the most common vulnerabilities of Ethereum are mitigated by design. The

reentracy and delegatecall vulnerabilities do not exist in Move, as it uses static rather than dy-

namic dispatch. Move introduces the novel resource type which enforces a strict system of ownership

to prevent unauthorized access control, doing away with the flawed fallback function mechanism

for transferring digital assets. Vulnerabilities such as integer overflow/underflow are checked at

compile-time by the bytecode verifier. Furthermore, Move includes a theorem proving formal verifi-

cation tool called the Move Prover [175] for more complex property verification and vulnerability

detection.

As the adoption of Move increases, it necessitates robust developer tools and adherence to best

practice principles, similar to the existing infrastructure present in Ethereum. While Move’s design

mitigates a large number of common vulnerabilities, it does not prevent all vulnerabilities. The

extensive research on formal verification, gas optimization, and vulnerability detection of Ethereum

smart contracts needs to be applied to the Move language.

1.2 Contributions

1.2.1 VeriMove: A Model Checking Framework for the Move Language

The first contribution of this thesis is the development of VeriMove, the first model checking

framework that supports the Move language. It provides a user-friendly interface for developers to

graphically design their smart contracts. Properties about their smart contract are specified using

natural language templates and automatically verified. Once the user is satisfied with the smart

contract design, the corresponding Move source code is generated. VeriMove is an expansion of

the VeriSolid [104] model checking tool for Solidity [144], which contains two additional features.

First, VeriMove extracts VeriSolid’s parsing of Solidity statements into a separate module called

the language parser. This allows any language, including Move, to utilize the model checking frame-

work given the corresponding syntax tree. Second, VeriMove implements a finite state machine

generator, which creates a prototype transition system given a pre-written smart contract.

The performance of VeriMove is compared to the performance of VeriSolid on the same set

of smart contracts. These contracts are implemented in both VeriMove and VeriSolid. Each

contract is given a series of verification properties and verified by each tool. The experimental results

show that model checking is a feasible method to formally verify global properties in Move smart

contracts.

1.2.2 Gas Optimization of Move Smart Contracts

The second contribution of this thesis is to present the first work on gas optimization in the Move

language. Aptos is chosen as the underlying platform for the analysis since it is the leading Move-

enabled blockchain platform, and it was the first to develop a gas meter.

CHAPTER 1. INTRODUCTION 3

This thesis details Aptos’s gas meter. Then, the research on gas optimization in Solidity is

analyzed with its potential application explored in the Move language. This thesis proposes 11 gas

optimization patterns and principles for the Move language, and provides 5 patterns that decrease

the time complexity of the smart contract but have no e↵ect on gas consumption. A sample smart

contract is created for each optimization pattern, demonstrating their validity. These contracts are

used to estimate the e↵ect of each proposed optimization in a typical Move smart contract. The

experimental results show that the proposed gas optimization patterns reduce gas consumption in

a typical smart contract by 7� 56%.

1.2.3 Automated Auditing of Price Gouging TOD Vulnerabilities

The final contribution of this thesis is to develop a novel algorithm for automatically detecting and

rectifying the transaction order dependency (TOD) vulnerability in smart contracts. This vulner-

ability exploits the public mempool to gain information about pending transactions. An attacker

utilizes the priority fee mechanism to inject their malicious transaction before honest transactions in

order to change their final output. The mempool and priority fee mechanism are features of many

popular public blockchains, such as Ethereum and Aptos. As a result, smart contracts submitted to

these blockchains are susceptible to this attack.

This thesis proposes a static analysis based approach utilizing point-to analysis and guard state-

ments to automatically locate and rectify such TOD vulnerabilities. In particular, for each public

function, the algorithm identifies the dependent global blockchain variables. By ensuring their val-

ues do not change between the transaction’s submission and execution, it is impossible for other

transactions to a↵ect the final output. This algorithm is implemented in a prototype tool using

Slither [54], a static analyzer for Solidity. The empirical results on a benchmark suite containing

51 Solidity smart contracts show that the proposed methodology can be used to detect and rectify

such vulnerabilities, or to certify their absence.

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 provides background on blockchain fundamentals, the

Ethereum blockchain platform, the Move smart contract language, and the field of formal methods.

Chapter 3 presents VeriMove, the first model checking framework for the Move language. Chap-

ter 4 presents the first work on gas optimization in the Move language. Chapter 5 presents a static

analysis methodology and prototype implementation for the detection and rectification of the TOD

vulnerability. Finally, Chapter 6 summarizes this thesis and outlines avenues for future work on

these topics.

Chapter 2

Background

2.1 Introduction

This chapter provides a brief introduction to the fields of blockchain and formal methods, both of

which are important background related to the contributions of this thesis. Section 2.2 provides

an introduction to the fundamentals of blockchains. Section 2.3 describes the popular blockchain

platform Ethereum including its introduction of smart contracts. Section 2.4 describes the new

smart contract language Move, describing its novel design and safety features. Finally, Section 2.5

provides an introduction to the field of formal methods, in particular the techniques of theorem

proving and model checking.

2.2 Blockchain

As debit and credit cards continue to be used in lieu of cash [44, 45], commerce becomes more

dependent on financial institutions to authorize and settle each transaction. This is undesirable for

both consumers and merchants. The merchant must hassle the consumer for personal information

to avoid fraudulent transactions. Credit card companies charge merchants between 1.5% to 3.5% of

each transaction [72]. Part of this fee goes to the financial institutions to settle the transaction, which

can take multiple days as financial institutions wait to batch as many transactions as possible. Due

to this reliance on financial institutions as the trusted middleman, the current commerce system

contains ine�ciencies, which increase the cost of goods and services and limits the circulation of

money in the economy.

Blockchain refers to a class of algorithms and protocols which allow for secure transactions

between individuals without the need for a trusted middleman. Its rapid adoption represents a

profound paradigm shift in the world’s economic systems [24]. This section describes the fundamental

aspects of a blockchain.

2.2.1 Properties of Cryptocurrency and Early Systems

A digital currency refers to any currency that is available in electronic form. A cryptocurrency is a

digital currency which does not require a centralized authority to facilitate transactions. Centrally

controlled digital currencies, such as video game credits and customer loyalty points, are simple to

4

CHAPTER 2. BACKGROUND 5

design, as the creator maintains complete control over transaction protocols. However, designing

a cryptocurrency that is decentralized while maintaining security and integrity proved to be much

more di�cult.

The main function of a currency is to be exchanged. Ideally, the exchange of cryptocurrencies

closely resembles that of physical cash. To illustrate the required attributes of a cryptocurrency,

consider the interaction between two individuals: Alice and Bob. Suppose Alice wants to send a

portion of her digital tokens, a particular instance of a cryptocurrency, to Bob. Such a transaction

must satisfy the following five properties. First, Alice can send any of her tokens to any person at

any time. Second, the transaction does not require the consent of any additional parties. Third, only

Alice is able to spend her tokens. No one else can spend her tokens for her (unless Alice gives explicit

permission). Fourth, Alice cannot spend the same tokens more than once. Fifth, the transaction is

immutable, neither Alice nor Bob can alter nor revert the transaction once it has been sent.

Early cryptocurrency systems [13, 33, 35, 46, 49, 59, 155] utilized a peer-to-peer, Byzantine fault

tolerant network in order to satisfy the first two properties. The third property is solved using public

key cryptography. Each user in the network generates a public/private key pair. The public key is

used as a unique identifier, called an address, to send and receive transactions. Each transaction

must be signed by the private key of the sender, called a digital signature. Therefore, assuming that

Alice exclusively holds her private key, only she can produce a signed transaction for the transfer

of her tokens. The fifth property requires a decentralized consensus algorithm. This is a di�cult

problem, but partly solved by early systems. Consensus algorithms will be discussed in Section 2.2.4.

The main roadblock of early systems was satisfying the fourth property, called the double spend-

ing problem. Prior systems were susceptible to Sybil attacks, where a single attacker creates many

accounts in order to gain a large share of the network. Thus, these protocols required all partici-

pants of the network to be known in order to ensure security, which excludes applications requiring

anonymity. In 2008 Satoshi Nakamoto introduced Bitcoin [114], which was the first cryptocurrency

system to solve the double spending problem, and therefore satisfied all of the aforementioned prop-

erties. Bitcoin marked the genesis of modern blockchains. Its ideas and concepts have been utilized

and expanded upon by many subsequent systems [1, 7, 10, 58, 97, 137, 148, 170].

2.2.2 Blockchain Fundamentals

A blockchain is a peer-to-peer, Byzantine fault tolerant network which maintains a decentralized,

transparent, and immutable digital ledger. The ledger records the exchange and distribution of digital

assets across the network, or more generally the global state of the blockchain. A transaction is a

cryptographically signed set of instructions to update the global state of the blockchain. The most

common type of transaction is the exchange of cryptocurrency or other digital assets between users.

However, transactions in modern blockchains with the advent of smart contracts can perform more

abstract operations (discussed in Section 2.3). The digital ledger is structured as a series of blocks,

which connect sequentially to each other, i.e. a chain [18, 68]. Each block contains many transactions

and represents a transition of the blockchain from one global state to the next. Figure 2.1 shows an

example of this data structure.

There are two types of network participants in a blockchain. Users hold a unique public/private

key pair, which allows them to access the ledger as well as submit transactions. Validators, also

called network nodes, facilitate the transactions between users by receiving transactions, ordering

CHAPTER 2. BACKGROUND 6

Block 1

Hash: 0fc81

PrevHash: Null

TxRoot: 5cgv

h Transaction List i

Block 2

Hash: 5b6ed

PrevHash: 0fc81

TxRoot: 8ynk

h Transaction List i

Block 3

Hash: 85cb1

PrevHash: 5b6ed

TxRoot: s8nr

h Transaction List i

Block 4

Hash: 76c17

PrevHash: 85cb1

TxRoot: f95t

h Transaction List i

Block 2b

Hash: 8ef27

PrevHash: 0fc81

TxRoot: au2c

h Transaction List i

Block 3b

Hash: 2b7bc

PrevHash: 8ef27

TxRoot: tveu

h Transaction List i

Block 3c

Hash: 24z91

PrevHash: 5b6ed

TxRoot: Null

h Transaction List i

Primary Chain

Forked Chain

Invalid Block

Figure 2.1: A Simplified Example of a Blockchain

them into blocks, and updating the blockchain state accordingly. Validators are given rewards for

each block they add in the form of the network’s native cryptocurrency. The value of the reward

is designed so that validators are game-theoretically incentivized not to deviate from the intended

protocol [95, 110].

The process of combining transactions into a block in accordance with the rules and protocols of

the network is called block validation. Once a block has been validated, it is broadcast to the entire

network. Upon receiving a new block, each network node checks the validity of the block, called block

verification. There are three possible outcomes. 1) The block was not validated corrected, called an

invalid block shown in red in Figure 2.1, so it fails verification and is rejected by the network. This

results in no change to the digital ledger. 2) The block is validated correctly and passes verification

upon broadcasting. In this case, the block is added to the network and the ledger state is updated

accordingly. The sequence of valid blocks agreed upon by the majority of the network is called the

primary chain shown in white in the above figure. 3) Multiple blocks are validated and submitted to

the network at the same time. This results in network nodes disagreeing on the ledger state, called

a fork shown in blue in Figure 2.1. Resolving forks such that there is vast majority agreement on

the primary chain is the job of the consensus algorithm discussed in Section 2.2.4.

CHAPTER 2. BACKGROUND 7

2.2.3 Block Contents

Each block in a blockchain contains three sections: the block number, the header, and the body. In

Figure 2.1, these sections are delineated by horizontal lines. The block number denotes the block’s

position in the sequence of the primary chain. The block header contains meta-data about the block

constructed during block validation and used for block verification. Lastly, the block body contains

the list of transactions to be executed as well as all of the data necessary for their execution. Since

transactions are non-commutative in general, the order of transactions within blocks is important.

In more detail, the block header includes the fields PrevHash, Hash, and TxRoot. Depending

on the particular blockchain and consensus algorithm, other fields are also included. The PrevHash

field is the hash (e.g. SHA-256, keccak256, etc) of the header of the previous block in the sequence.

The Hash field is the hash of the current block’s header excluding the Hash field. Since the PrevHash

is included in this hash, the current block is dependent on the previous block, which is dependent

on its previous block, and so on. Thus, if the header of any block in the blockchain is modified,

this change will cascade down the chain through the Hash fields. Consensus algorithms utilize this

property to ensure that block headers are immutable. Lastly, the TxRoot field contains the hash

of the transaction list. Various data structures are used to accomplish this e�ciently [90, 106].

Thus, any change to the transaction list will result in a di↵erent TxRoot value. Since the block

header is immutable and the TxRoot value is included in the block header, the transaction list is

also immutable.

2.2.4 Consensus Algorithms

Generally, there are two types of blockchains: permissionless and permissioned, also called public and

private respectively. Permissionless blockchains allow anyone to join as a validator. The job of the

consensus algorithm in these blockchains is two-fold: design a Sybil-resistant block validation process

such that no single node can gain too much power in the network, and implement a fork-resolution

procedure so that all network nodes agree on the state of the blockchain. There are numerous

consensus algorithms [25, 96, 146, 151, 167], but the two most popular are Proof of Work [48] and

Proof of Stake [87].

In Proof of Work (PoW) blockchains, the validation of a block requires the validator to solve

a cryptographic puzzle. The solution is incorporated into the block header through an additional

field called the nonce, which is an abbreviation for “number used once” or “no. once”. As long as

standard cryptographic assumptions hold [132], finding such a nonce requires random guessing and

significant computation. Hence, validators in PoW blockchains are called miners. To resolve forks,

many PoW blockchains use the longest chain rule, which asserts that, given a set of distinct chains,

the longest sequence is the primary chain [43]. Thus, power over the network is partitioned by

computational resources, so a single node gaining disproportionate power over the network becomes

di�cult and unlikely [8].

A significant drawback of PoW is its considerable computational waste as all miners participate

in a network-wide brute force search for the nonce. Proof of Stake (PoS) was developed as a more

e�cient alternative. In this protocol, validators choose an amount of their tokens to “stake”. When

a new block needs to be constructed, a validator is chosen randomly, proportional to their stake. If

the block is found to be improperly validated, then the validator’s stake is slashed, i.e. the validator

CHAPTER 2. BACKGROUND 8

forfeits their stake to the network, and the block is reverted. To resolve forks, PoS blockchains

typically use finality and checkpoint mechanisms [29].

Permissionless blockchains often su↵er from low throughput and high latency due to the com-

putationally intensive consensus algorithms [166]. An alternative approach is to have a closed set

of validators, allowing only authorized nodes to act as validators, called a permissioned blockchain.

They can achieve a high throughput and low latency, but they are not a trustless environment as a

central authority gatekeeps the validators. The job of the consensus algorithm in these blockchains is

to design e�cient and e↵ective Byzantine fault-tolerant (BFT) algorithms to tolerate arbitrary fail-

ures [93, 173, 174]. If there are n participants in the network, PBFT [31] and HoneyBadgerBFT [108]

use multi-round voting to achieve consensus in O(n2) messages. Additionally, SBFT [61], Hot-

Stu↵ [171], and Prosecutor [172] achieved consensus in O(n) messages by optimizing voting protocols

to a single round.

2.3 The Ethereum Blockchain

In 2014, Vitalik Buterin introduced Ethereum [170], whose main innovation was to expand the ca-

pabilities of the distributed ledger. Unlike Bitcoin, which only tracks token ownership within the

network, Ethereum’s global state allows for arbitrary computation and storage of user data. Trans-

actions take the form of bytecode, which are instructions executed by the Ethereum Virtual Machine

(EVM) to update the global state. A smart contract is a program executed by a blockchain con-

sisting of many bytecode instructions. Thus, Ethereum can be thought of as a universal computer

operating on a decentralized, immutable database shared among network participants. This gener-

alized model of a blockchain has been adopted by almost every subsequent blockchain platform [1,

7, 10, 58, 137, 148].

2.3.1 Accounts

The global state of Ethereum is partitioned into accounts, which are mappings from account ad-

dresses and to an account state. An account address a 20-byte hexadecimal string used to interact

with other accounts. The account state contains important account information such as the balance

of ETH (Ethereum’s native token) and a nonce used to count the number of transactions sent from

the account. All accounts can receive, hold, and send ETH as well as interact with deployed smart

contracts. Ethereum is an accounts-based blockchain where the ETH balance of an account is rep-

resented as an integer in the global state. The transfer of ETH simply modifies the balance of the

sending and receiving accounts. This contrasts unspent transaction output (UTXO) blockchains,

such as Bitcoin, where the native token is non-fungible and instances of tokens are explicitly trans-

ferred between accounts.

There are two types of accounts in Ethereum: externally-owned accounts and contract accounts.

An externally-owned account (EOA) is an account created by a user. They are defined a by pub-

lic/private key pair, which can be used to receive, hold, and send ETH as well as invoke deployed

smart contracts. A contract account does not contain a private key; instead, its account activities are

controlled by a smart contract. Thus, the account state of a contract account additionally contains

the code of its smart contract and its storage contents. To ensure data authenticity, the storage

CHAPTER 2. BACKGROUND 9

contents of an account contains a 256-bit hash of the root of a Merkle Patricia Trie [107]. Execution

of a contract account’s bytecode can be initialized by an EOA or another contract account.

2.3.2 Smart Contracts

In Ethereum, smart contracts are written in Solidity [144], a high-level JavaScript-inspired language,

which is compiled into low-level bytecode and stored in the smart contract’s account. Each smart

contract defines methods, which can be invoked by other account via transactions submitted to the

blockchain. If validated inside a block, the bytecode instructions are executed by all network nodes

using the EVM and the global blockchain state is updated accordingly.

Smart contracts data can be located in memory or storage. Memory contains runtime data such

as local variable values. This consists of 256-bit wide sectors, which can be randomly accessed.

Data is packed in the order given by the contract. If runtime data exceeds the capacity of the

current memory, then another 256-bit wide sector is allocated. After execution is complete, the

allocated memory sectors can no longer be accessed. Note that memory data is not freed, instead

it is overwritten by subsequent smart contract executions. However, this may change in the future.

Storage, also called state variables, refers to data located in the contract’s global storage on the

blockchain. This data is stored in its contract account state, and persists after the execution of the

smart contract.

2.3.3 Gas

Each network node must store the entire global state of the blockchain as well as execute each

transaction. This is vulnerable to denial of service attacks where a user submits a computation-

intensive transaction, causing a delay in the network. For instance, an infinite loop in the smart

contract. Ethereum, and most modern blockchains, solve this problem using the concept of gas. Each

EVM operation is given a corresponding cost, measured in gwei. One gwei is equivalent to 10�9 ETH.

Each transaction then has a total gas price required for its execution, also measured in gwei, which

is calculated by the gas meter at runtime. Upon submitting the transaction, the user specifies a

max fee, which is an upper bound on the total gas they are willing to spend on the transaction.

If a transaction uses more gas than its gas limit allows, then the transaction will fail, causing no

change to the global state. Additionally, this incentivizes non-malicious users to optimize their smart

contract logic in order to reduce computation and subsequently gas cost, causing an overall decrease

in network latency.

The London upgrade [157] introduced a significant change to Ethereum’s block validation pro-

tocol. When a smart contract transaction is invoked and submitted for block validation, it is first

added to the mempool, which is a waiting area for the pending transactions that have not yet been

added to a block. In addition to the max fee, a priority fee (measured in gwei) is included in

each transaction. The validator of a block receives all priority fees from every transaction included

in the block. This fee acts as a tip to incentives validators to include particular transactions. The

higher the tip, the more likely a validator will include the transaction in the next block. In certain

smart contracts this mechanism can be exploited for financial gain via the front-running attack

(Chapter 5).

CHAPTER 2. BACKGROUND 10

2.4 The Move Language

Move [23] is a new smart contract language designed to ensure security and verifiability while retain-

ing coding flexibility. It introduces the novel resource type with the goal of addressing the scarcity

and access control issues inherent in representing digital assets on a blockchain. Additionally, Move

incorporates a bytecode verifier for static analysis to catch common vulnerabilities, as well as a theo-

rem proving formal verification tool called the Move Prover [175] for more complex, user-defined

properties. At the time of writing, the Aptos [10], Sui [148], OpenLibra [1], and Starcoin [147]

blockchains use Move as their smart contract language.

2.4.1 Global Ledger State

The global ledger state of Move consists of a set of accounts, each represented as a unique 256-

bit value known as an account address. Each account consists of a set of table entries, which are

key-value pairs stored in Binary Canonical Serialization format. These table entries contain smart

contract bytecode published by the account and data owned by the account. An item of global

storage is a generic term that refers to any key-value pair in global storage.

The structure of Move’s global state can be interpreted as independent capsules of data, each

owned by a unique account address. Due to the rigid structure of the Move language, an account

cannot access data outside of its capsule. This is starkly di↵erent from other blockchains such as

Ethereum, where the data of many di↵erent users may be stored under the same account address.

Figures 2.2 and 2.3 compares account data storage in Move and Ethereum. In this example, account

0x123 creates a smart contract called Coin with a global state variable called balance. The account

0x123 and another account 0xABC both create an instance of balance. In Move, the values of

these balance variables are stored in the owner’s account space. In Ethereum, however, the smart

contract gets its own independent address space, 0xSC123 in this example, which stores both values.

The benefit of Move’s global storage structure is that the program logic is separated from the

digital assets of the users. This is not only more secure but is also more expressive and flexible

compared to Ethereum. Due to the features of the Move language, accounts have full control over

their data. No other account, including the account defining the smart contract, can access it.

0⇥123 0⇥ABC

module 0x123::Coin {
resource balance {

value: u8

}
// bytecode

}

module

0x123::Coin::balance {
value: 5

}

resource

0xABC::Coin::balance {
value: 10

}

resource

Figure 2.2: The Global Ledger State of Move

CHAPTER 2. BACKGROUND 11

0⇥SC123 0⇥123 0⇥ABC

contract Coin {
mapping

(address => uint)

public balance;

// bytecode

}

smart contract

balance {
0x123: 5

0xABC: 10

}

state variables

Figure 2.3: Global Ledger State of Ethereum

2.4.2 Smart Contracts

Smart contracts are written in the high-level language Move and compiled into low-level bytecode,

which is executed by the Move Virtual Machine (MoveVM). The MoveVM is a stack machine con-

taining an operation stack where Move values are stored and a call stack where active functions are

stored. All registers in the MoveVM are 64-bits. Users theoretically have unlimited local memory al-

location. However, the instantiation of memory requires gas and computation. A memory-intensive

smart contract will result in either an out-of-gas error or an execution-time-limit error.

A Move smart contract is called a module, which define structs and procedures. Structs are

custom data types that can be objects of global storage. Procedures are functions that define rules

for state transitions. When a module is submitted to the blockchain, its high-level Move code is

compiled to low-level bytecode and stored (but not executed) in the account of the publisher on

the blockchain. Transaction scripts can import modules to utilize their structs and procedures.

Similar to the main function in a C program, the transaction script is the code initially executed by

blockchain transactions.

2.4.3 Memory Management

To manage memory, Move implements a Rust-like system of ownership [158] where each variable

“owns” its stored value, and each stored value can only have one owner. A stored value can be copied

to another variable (if allowed by the type) in which case the stored value is duplicated and assigned

to the new variable as its sole owner; the original variable retains its stored value. Alternatively,

ownership of a stored value can be transferred to another variable in which case the new variable

owns the stored value, and the original variable is no longer valid to use. Values can be transferred

via variable assignment or the return value of a function. Once the end of a local scope is reached, all

local variables are dropped and their allocated memory is freed. The borrow checker is the compiler

component that ensures the program follows these ownership rules.

Figure 2.4 shows an example of value ownership transfer in Move. Analyzing the left figure first,

the variable s1 is instantiated on line 4 with the value "Hello, World!". On line 5, the ownership

of this value is transferred from variable s1 to s2. Now, variable s2 points to the value "Hello,

CHAPTER 2. BACKGROUND 12

1 module MyModule::my_module {

2 use std::string;

3 fun transfer_of_ownership() {

4 let s1 = string::utf8(b"Hello, World!");

5 let s2 = s1;

6 let s3 = s1; // error
7 }

8 }

1 module MyModule::my_module {

2 use std::string;

3 fun transfer_of_ownership() {

4 let s1 = string::utf8(b"Hello, World!");

5 let s2 = copy s1;

6 let s3 = copy s1;

7 }

8 }

Figure 2.4: Value Ownership Transfer Example

World!" and variable s1 is a null pointer. On line 6, variable s3 is attempting to borrow the value

stored in variable s1. However, since s1 no longer owns any values, an error is thrown. In the right

figure, the value in variable s1 is copied to s2 and s3 rather than transferred. Thus, no error is

thrown and all variables have di↵erent instances of the value "Hello, World!".

2.4.4 Struct Abilities

In a Move module, custom data types can be defined using structs. A struct can have the following

abilities: key, store, copy, and drop. The abilities key and store allow the struct to be used as a

key and value, respectively, in key-value pairs in global storage. The ability copy allows an instance

of the struct to be copied into another variable. The ability drop allows an instance of the struct

to be dropped by the end of the scope. Primitive types - u8, u64, u128, bool, and address - have

the abilities store, copy, and drop, which results in the standard behavior of classical program

variables. These abilities are enforced in the Move language through the Rust-like ownership system

and the bytecode verifier.

Figure 2.5 gives an example of a struct with no abilities, which serves to further illustrate Move’s

ownership and memory management rules. The top-left figure instantiates an instance of MyStruct.

At the end of the function’s local scope, Move attempts to free all local variables. However, since

MyStruct does not have the drop ability, an error is thrown. This can be remedied in three ways.

First, in the top-right figure, the drop ability is added to MyStruct. Second, in the bottom-left

figure, the struct is manually deallocated. Third, in the bottom-right figure, the struct is passed

into the return statement, and the value’s ownership is transferred to the caller of the function.

1 module MyModule::my_module {

2 struct MyStruct {

3 value: u64

4 }

5 fun struct_with_no_abilities() {

6 let my_struct = MyStruct { value: 0 };

7 // error
8 }

9 }

1 module MyModule::my_module {

2 struct MyStruct has drop {

3 value: u64

4 }

5 fun struct_with_no_abilities() {

6 let my_struct = MyStruct { value: 0 };

7

8 }

9 }

1 module MyModule::my_module {

2 struct MyStruct {

3 value: u64

4 }

5 fun struct_with_no_abilities() {

6 let my_struct = MyStruct { value: 0 };

7 let MyStruct{ value: _ } = my_struct;

8 }

9 }

1 module MyModule::my_module {

2 struct MyStruct {

3 value: u64

4 }

5 fun struct_with_no_abilities(): MyStruct {

6 let my_struct = MyStruct { value: 0 };

7 return my_struct;

8 }

9 }

Figure 2.5: No Ability Struct Example

CHAPTER 2. BACKGROUND 13

2.4.5 Resources

A resource is a struct with only the key ability (and optionally the store ability). Thus, it cannot

be created nor destroyed by code outside its declaring module and can never be copied or dropped.

When a resource is initialized, it must eventually be stored globally under an account address. Like

all variables in Move, resources are subject to the Rust-like ownership rules. Thus, the storing

account address is the resource’s sole owner. Resources may be transferred between account ad-

dresses; however, since resources cannot be duplicated, the original account address loses access to

the resource as the receiving account address becomes the sole owner. While resources may seem

restrictive, they allow programmers to encode safe, yet customizable digital assets that are controlled

only by their owner and can neither be copied nor destroyed by code outside the declaring module.

Figure 2.6 shows each way one can access a resource in global storage. Using the move to function,

a resource can be added to global storage. In this case, ownership is transferred from the defining

module to its global storage. Using the move from function, ownership of a previously stored resource

can be transferred to a module variable. Note that the resource cannot be dropped, so the module

must either deallocate the resource or transfer its ownership elsewhere. Using the borrow global

function, a resource’s fields can be read. Lastly, using the borrow global mut function a resource’s

fields can be updated. Note that during a read and write, ownership of these values has not been

transferred, only borrowed. Thus, at the end of the local scope, ownership is transferred back to

global storage. In all examples, in order to access a resource one must obtain signer privilege. A

signer is an account address with a digital signature, which gives other accounts permission to access

their global storage data.

1 module MyModule::my_module {

2 struct MyResource has key {

3 value: u64

4 }

5 fun create_resource(account: &signer) {

6

7 let my_resource = MyResource { value: 0 };

8 move_to(account, my_resource);

9 }

10 }

1 module MyModule::my_module {

2 struct MyResource has key {

3 value: u64

4 }

5 fun destroy_resource(account: &signer)

6 acquires MyResource {

7 let my_resource =

8 move_from<MyResource>(account);

9 MyResource {value: _} = my_resource;

10 }

11 }

1 module MyModule::my_module {

2 struct MyResource has key {

3 value: u64

4 }

5 fun read_resource(account: &signer)

6 acquires MyResource {

7 let my_resource =

8 borrow_global<MyResource>(account);

9 let x: u64 = copy my_resource.value;

10 }

11 }

1 module MyModule::my_module {

2 struct MyResource has key {

3 value: u64

4 }

5 fun write_resource(account: &signer)

6 acquires MyResource {

7 let my_resource =

8 borrow_global_mut<MyResource>(account);

9 my_resource.value = 1;

10 }

11 }

Figure 2.6: Resource Create, Destroy, Read, and Write

2.4.6 Built-In Verification

Before any Move module can be published, it must pass the bytecode verifier. At compile-time, the

bytecode verifier statically verifies basic lightweight safety properties. These checks fall into four

categories: (i) stack consistency checks such as the height of the operand stack is the same at the

CHAPTER 2. BACKGROUND 14

beginning and end of each basic block; (ii) structural checks such as checking that statements are

well-formed and module dependencies are acyclic; (iii) semantic checks such as incorrect procedure

arguments, dangling references, duplicating a variable without the copy ability, and dropping a

variable without the drop ability; and (iv) authorization checks such as accessing items without

signer privilege [23].

For verification of more complex properties, Move has an embedded o✏ine verifier called the

Move Prover [175], which is a theorem proving formal verification tool written in Rust. The

prover takes as input Move source code annotated with specifications and determines whether the

code meets those specifications. Supported specifications include Floyd-Hoare pre-conditions, post-

conditions, and function aborts.

2.5 Formal Methods

In traditional software applications, the typical method for verifying a program’s correctness is

through empirical system testing. This involves writing particular test-cases to verify intended

behavior and mocking the production environment via simulations. Test-cases can only verify func-

tional requirements, which may contain ambiguities that lead to inadequate testing. Simulation

requires assumptions, which do not always cover all the aspects of a system [47]. The core issue is

that system testing can find bugs, but cannot guarantee the absence of errors as exhaustive system

testing is almost never possible practically nor theoretically.

Formal methods are mathematically-based techniques for modeling programs, unambiguously

specifying system requirements, and verifying adherence to these requirements. Unlike system test-

ing, these methods can guarantee program correctness and an absence of errors. Typically, these

systems utilize an underlying first-order or higher-order logical language along with satisfiability

modulo theories (SMT) solvers, which generalize the concepts of boolean satisfiability (SAT) to more

complicated data structures. Two popular types of formal methods are theorem proving and model

checking.

2.5.1 Theorem Proving

Theorem proving consists of modeling programs and system requirements in rigorous mathematical

logic. The adherence of a program to system requirements is proved using a formal proof-system.

There are three types of theorem provers. Automated theorem provers (ATP) use logical deduction

and exhaustive search until either a proof or a counter-example is found [30, 111, 119, 136]. However,

due to the complexity of system requirements, exhaustive search may not be feasible. Interactive

theorem provers (ITP) allow for human intervention in order to complete di�cult proof [20, 42,

62, 85, 152]. For example, the user may assert smaller lemmas which can be automatically proved.

Then, using these lemmas, an automated search for a proof of the main result becomes feasible.

Lastly, hybrid tools combine multiple theorem provers into a single application [112, 128, 129, 134].

The advantage of theorem proving is their theoretical foundation. If the underlying logic is sound

and complete, then the theorem proving tool can formally verify any property. Moreover, theorem

proving can model code of arbitrary size and systems with infinite state-spaces without state-space

explosion. However, the disadvantage of theorem proving is their practical application. APTs su↵er

from being extremely computationally intensive. This is partially solved by IPTs; however, these

CHAPTER 2. BACKGROUND 15

tools typically require an expert in mathematical logic in order to use them e↵ectively. Furthermore,

many theorem proving tools work on a method-by-method basis, meaning they can prove functional

properties, but not necessarily system-wide properties.

Floyd-Hoare Logic

Floyd-Hoare Logic [55, 76] is one of the first axiomatic methods of formally proving properties of

programs. While modern theorem provers use SMT solvers with first-order or higher-order logic as

its foundation, the concepts of preconditions and postconditions are still used in the theory of formal

methods and many theorem proving tools, including the Move Prover. Thus, a brief introduction

is given in this section.

Let C be a program. A precondition is a claim about the initial state of C. A postcondition is a

claim about the terminal state of C. The following is called a Floyd-Hoare triple,

{P} C {Q} (2.1)

where P and Q are preconditions and postconditions of program C, respectively. A Floyd-Hoare

triple is said to be valid if when program C is executed in a state satisfying P , it’s final state satisfies

Q. The goal of Floyd-Hoare logic is to determine whether a given Floyd-Hoare triple is valid.

An axiom is a statement that is valid by assumption. In Floyd-Hoare logic, there are two axioms:

the empty axiom and the assignment axiom, given in Equations 2.2 and 2.3 below.

true

{R} empty {R} (2.2)

true

{R[E/x]} x := E {R} (2.3)

A rule of inference is a transformation from one Floyd-Hoare triple to another that maintains

validity. Examples of such rules in Floyd-Hoare logic are the composition rule and consequence rule

given in Equations 2.4 and 2.5.

{P} C1 {R} {R} C2 {Q}
{P} C1 ; C2 {Q} (2.4)

P =) P
0 {P 0} C {Q0} Q

0 =) Q

{P} C {Q} (2.5)

The notation indicates that the top set of statements entails the bottom set of statements. These

rules equivocate semantic and syntactic validity; the latter of which is easily verified by computers.

Applying the syntax of these rules guarantees that the result maintains semantic validity.

When attempting to prove the semantic validity of a Floyd-Hoare statement, one starts with

the target statement and applies the inference rules in reverse. Iteratively applying these rules will

result in a tree branching upward, rooted by the target statement. In Floyd-Hoare logic, a proof is

a tree of inferences starting at the target statement such that each step maintains validity and all

leafs are axioms. When constructing a proof, there is an element of choice. In the Equation 2.4,

there is a choice of the statement R. In Equation 2.5, there is a choice of statements P
0 and Q

0.

APTs require heuristic algorithms to make these choices. ITPs require human ingenuity to suggest

CHAPTER 2. BACKGROUND 16

intelligent statements.

This logic is sound and complete, relative to the interpretive semantics [41]. Thus, given any

Floyd-Hoare triple, a proof exists if and only if the triple is valid. This logical structure provides a

method of specifying program properties that is both intuitive for developers as they typically think

in terms of inputs and outputs of programs, and automatically verifiable by a computer as semantic

validity is reduced to syntactic validity.

2.5.2 Model Checking

Model checking is an automated technique that, given a finite-state model of a system and a formal

property, systematically checks whether this property holds for that model [16]. Figure 2.7 shows

the overview of the model checking process. A program is modeled as an abstract transition system

and properties are encoded in a restricted formal logic. Then a model checker analyzes the system.

If there exists a path through the transition system that violates one of the properties, the model

checker will output a concrete counterexample in the form of an execution path. Otherwise, the

system satisfies the given properties.

Program Modeling
System

Model

Requirements Formalizing
Property

Specification

Model

Checking

Satisfied

Violation +

Counterexample

Figure 2.7: Model Checking Overview

A transition system is an automaton-like data structure consisting of states and transitions. Each

state represents a set of configurations of the program. Each transition represents a set of sequential

operations which update the program configuration. An example of a transition system is given in

Figure 2.8, which models the functionality of a simplified vending machine that dispenses coke and

sprite. The red node indicates the initial state of the system. A desired property of this system is “if

the user inserts money, then the machine will eventually dispense a beverage”. This statement can

be formalized into rigorous logic and verified. In this transition system, all paths eventually lead to

either dispense coke or dispense sprite. Thus, this property holds in this model.

There are two types of model checkers: explicit-state and symbolic. Explicit-state model checking

algorithms directly compute program states and use graph algorithms to explore the state space

starting from the initial state [71, 77, 78, 86]. The issue with this technique is state-space explosion

and limited memory. Symbolic model checking algorithms partially address these issues using implicit

representations of sets of states [6, 32, 38, 60, 150]. Binary Decision Diagrams (BDD) are used to

verify the system against the property specifications [105]. Quantified Boolean Formula (QBF)

are used to deal with asynchronous programs [40]. Properties are specified in a restricted formal

CHAPTER 2. BACKGROUND 17

Pay

Select

SpriteCoke

insert money

select spriteselect coke

dispense spritedispense coke

Figure 2.8: Transition System - Vending Machine Example

logic so that they are compatible with state-space search. Examples include Linear Temporal Logic

(LTL) [133], Property Specification Language (PSL) [80], SystemVerilog Assertions (SVA) [169], and

Computational Tree Logic (CTL) [39].

The advantages of model checking arise from its ease of use and interpretation, especially when

compared to theorem proving. Model checking requires the creation of a high-level abstract repre-

sentation of their program. This compels the user to focus on the overall system behavior, rather

than minute details. As a result, model checking does not demand expertise in mathematical logic.

Additionally, if a system does not adhere to a property, model checking provides concrete coun-

terexamples in the form of state traces, aiding developers in locating the source of the issue and

facilitating debugging e↵orts. Finally, unlike most theorem proving tools, model checking can verify

properties concerning the interactions that span multiple function executions.

The primary challenge of model checking is state-space explosion. For large systems, many model

checking tools only partially explore the state space, e.g. up to a certain depth. Thus, to ensure

completeness of verification, the user is limited to either small systems or high-level representations

of complex systems. Additionally, properties must be specified in simplified logics such as LTL and

CTL. Together, this limits the expressiveness of the properties that users can verify.

Chapter 3

VeriMove: A Model Checking

Framework for the Move Language

3.1 Introduction

Due to the immutability of the blockchain, it is imperative to identify and prevent vulnerabilities

in smart contracts prior to deployment. One method for mitigating vulnerabilities is to use the

many coding practices [81] accessible in traditional programming languages. Current smart contract

coding practices include the following: (i) carefully understanding the semantics of the language

specification [170], (ii) using safe coding practices highlighted by teams like OpenZeppelin [122],

and (iii) mandatory source code auditing by qualified service providers [22]. While these practices

can prevent common vulnerabilities, they o↵er no guarantees, and other vulnerabilities may still be

present.

An alternative approach for mitigating vulnerabilities is to use formal verification. Formal ver-

ification tools are based on formal operational semantics and o↵er robust verification guarantees.

They enable the formal specification and verification of attributes and can discover both typical and

atypical vulnerabilities that could lead to a security property violation. Among the existing verifi-

cation tools there are three common categories of techniques: theorem proving, symbolic execution,

and model checking [56, 70].

Move [23] is a smart contract language designed to ensure security and verifiability while retaining

coding flexibility. Currently, the bytecode verifier and Move Prover [175] can only verify local

properties that are contained within a single Move function. However, some properties are global

in nature, and occur as the result of many function executions. This demonstrates a need for

additional verification tools. Notably, VeriSolid’s correct-by-design model checking framework

has shown success in prior work [104, 116] for verifying global properties in Solidity.

This chapter presents VeriMove, a model checking framework that extends VeriSolid for the

Move language. The contributions of this research are as follows:

• A comparative analysis of Move and Solidity, focusing on the safety features (and lack thereof)

found in both languages and the trade-o↵s associated with utilizing one over the other.

• VeriMove is introduced, a model checking framework that leverages VeriSolid to verify

18

CHAPTER 3. VERIMOVE: A MODEL CHECKING FRAMEWORK FOR THE MOVE LANGUAGE 19

and generate Move smart contracts automatically based on the specifications provided.

• The workflow of the VeriMove prototype implementation is outlined in-depth.

• As part of the model checking framework, the operational semantics for the new Move con-

structs are defined.

• VeriMove is compared with VeriSolid by comparing the experimental outcomes of three

types of smart contracts, showing that VeriMove can verify global properties in Move with

reasonable performance.

The remainder of the chapter is structured as follows. Section 3.2 summarizes the works that

are relevant to this research. Section 3.3 compares both Solidity and Move in detail, examining

their features, vulnerabilities, and trade-o↵s. Section 3.4 described the blind auction smart contract

as a motivating example for the necessity of model checking. Section 3.5 examines workflow of

the VeriMove model checking framework and introduce its components. Section 3.6 describes

the additional and updated operational semantics for the Move language. Section 3.7 describes

the prototype implementation in detail and examines the experimental results. Finally, Section 3.8

concludes this work.

3.2 Related Work

Due to the immutability of the blockchain, it is best to detect vulnerabilities in a smart contract

before it is deployed. This can be achieved through the method of formal verification, which proves

or disproves whether certain properties hold for a given smart contract. Verification tools for smart

contracts can be classified as either theorem proving, symbolic execution, or model checking [56, 70].

Proof-based methods involve modeling the program and the desires properties in a formal math-

ematical language. A theorem prover for that language then uses well-known logical axioms and

simple inference rules to prove (or disprove) that the desires properties hold in the smart contract.

Tools of this type that are compatible with EVM bytecode include the K framework and F*. K [74]

is a general purpose framework that uses the formal semantics of a language to generate a variety of

tools. Using their semantic definition of the EVM bytecode, the K framework automatically gener-

ates a deductive verifier calledKEVM. This uses reachability logic to evaluate program specifications

expressed as reachability claims. Bhargavan et al. [21] designed a framework that converts Solidity

source code and EVM bytecode into the existing language F* where it can be verified for correctness

and saftey properties. The only theorem proving tool implemented for the Move language is the

Move Prover discussed in Section 2.4.6.

Symbolic execution replaces program variables with symbolic expressions such that subsequent

variables are expressed in terms of previous variables. The execution paths with respect to all feasible

inputs are generated and searched for vulnerabilities. Tools such as Oyente [14], GASPER [36],

and Osiris [162] construct a Control Flow Graph [4] to represent the state-space and use an SMT

solver to detect vulnerabilities. Other tools such as Slither [54] and SmartCheck [160] utilize

a semantic tree along with an intermediate representation [94] to detect vulnerabilities. Currently,

there are no symbolic execution tools implemented for the Move language.

CHAPTER 3. VERIMOVE: A MODEL CHECKING FRAMEWORK FOR THE MOVE LANGUAGE 20

Given a finite-state model of the program and a formal specification of the desired properties,

model checking verifies that the model behavior conforms to the specifications. This is often achieved

through state space exploration and satisfiability solvers. Well-known model checking tools include

Zeus andVeriSolid. Zeus [84] is a symbolic model checking tool that takes as input Solidity source

code along with XACML policy specification. It converts these inputs to a low-level intermediate

representation (LLVM bitcode [94]) and leverages SeaHorn [67] to perform the symbolic model

checking. VeriSolid [104] is discussed in detail in Section 3.5.1. Due to its graphical representation

of the transition system and natural language templates for property specification, it is more user-

friendly than Zeus. VeriMove, the tool introduced by this thesis, is the first model checking tool

implemented for the Move language.

3.3 Comparison of Move and Solidity

Solidity is a smart contract language designed to run on the EVM. To date, it is one of the most

popular and widely used languages for smart contract development. Move is a recently developed

smart contract language, which continues to garner support among various blockchain networks due

to its unique safety features. This section compares the main di↵erences between Move and Solidity,

the trade-o↵s associated with each, and ultimately why Move is worthy of tooling.

3.3.1 Global Storage and Local Memory Management

During the execution of a smart contract, the compiler needs to manage three things: 1) the source

code of the smart contract, 2) the local variables used during execution, and 3) global variables that

remain persistent after execution.

In Solidity, each contract is given its own address space on the blockchain, where its source code

(functions) and global variables (state variables) are stored. In Move, however, smart contracts

are not given a separate address space. Instead, the smart contract bytecode (module) and global

variables (resources) are stored in the account of their respective owners. Thus, a declared resource

is not necessarily stored under the same account address as its defining module. This decoupling of

data from the control flow logic is not only more secure, but also makes Move a more expressive and

flexible language compared to Solidity.

For local variables in Solidity, once the execution of the function completes, the temporary

memory pointers move to the next available memory slot. From the developer’s perspective it

looks like their temporary memory has been wiped. However, Solidity does not guarantee that this

memory has been “zeroed out”, and does not provide any method for developers to manually free

their memory [145]. While Solidity claims this may change in the future, as it stands Solidity is

incredibly susceptible to memory leaks. In contrast as discussed in Section 2.4.3, Move implements

a Rust-like memory management system where each value has exactly one owner. This makes all

Move variables (both global and local) completely memory safe and guarantees no memory leaks.

3.3.2 Transfers

In order to perform a transfer from one contract address to another in Solidity, the sender con-

tract must use either send, transfer, or call, each of which behaves di↵erently and are intended

CHAPTER 3. VERIMOVE: A MODEL CHECKING FRAMEWORK FOR THE MOVE LANGUAGE 21

for di↵erent applications. Meanwhile, the receiver contract must implement a fallback function.

When the transfer is made, the EVM exits the sender contract and enters the fallback function

of the receiver contract. The fallback function completes the transfer, but may also execute other

code unbeknownst to the sender contract. Once the end of the fallback function is reached, the

EVM returns to the sender contract and continues on the next line. Many of the vulnerabilities

in Solidity can be attributed to unexpected behavior of and manipulating the interaction between

these functions, such as reentrancy, mishandled exceptions, unchecked call return value, delegate

call to untrusted callee, and denial of service from unexpected revert [34].

In Move, resources were developed to be implemented as digital assets. Recall from Section 2.4.5

that resources must follow the strict, Rust-like ownership rules and resources cannot be copied

nor dropped. Thus, transferring a resource is simply a matter of transferring its ownership between

account addresses, which can only be done by the resource’s sole owner. This is the biggest advantage

of Move; its design and implementation is centered around making the transfer of resources safe and

secure. Consequently, all aforementioned vulnerabilities, including reentrancy, are mitigated from

the Move language by design.

3.3.3 Trade-O↵s

Move is a more restricted language compared to Solidity. Based on the results from Section 3.7,

Move requires an increase of 35% in the lines of code on average for equivalent smart contract

functionality. This gives Move a larger learning curve and makes it generally more di�cult to use

in practice, which can result in more bugs and unintentional vulnerabilities.

The restrictions in the Move language are present by design and have an important purpose. A

Move smart contract that passes the bytecode verifier is completely memory safe and void of common

vulnerabilities, such as integer overflow/underflow and reentrancy. Moreover, the Move language and

the resource type were designed for safe and secure transactions. To date, a few vulnerabilities have

been discovered in the MoveVM [120, 121], which have subsequently been fixed. However, these were

minor mistakes in the implementation of the virtual machine, rather than a fundamental design flaw

of the language. Thus, compared to Solidity, Move is a much safer language.

3.4 Blind Auction: A Motivating Example

In a blind auction, each participant submits a bid which is kept secret from all other participants.

After the bidding period, the secret bids are revealed, and the winner is the participant with the

highest bid.

The Solidity documentation provides a smart contract implementation of a blind auction [143].

During the bidding period, bidders submit the hash of their bids along with a deposit to the smart

contract. After the bidding period is over, each bidder must send their secret key to the smart

contract to reveal their encrypted bid. A bid is valid if the original deposit is larger than the

submitted bid amount. The winner is the highest valid bid. After the bidding period, the winner

withdraws the di↵erence between their deposit and their bid. The other bidders withdraw their

entire deposits. This procedure ensures that each bid is confidential during the bidding period

(blind) and payment of a valid bid is irreversible after the bidding period (binding).

CHAPTER 3. VERIMOVE: A MODEL CHECKING FRAMEWORK FOR THE MOVE LANGUAGE 22

Consider the following statement about the blind auction procedures: “A bidder cannot submit

a bid after the bidding period”. Formally verifying this property using theorem proving tools is

di�cult as theorem provers typically can only verify the behavior of individual functions. The above

statement is a high-level property, which spans multiple functions invocations. Thus, model checking

is required to verify such a statement.

Figure 3.1 shows the transition system for the above blind auction smart contract implementation,

which will be used in the model checking process. It has been decomposed into the following states.

• Initialization (Init): Before the bidding period has started.

• Accepting Blinded Bids (ABB): The bidding period begins. Participants submit their

blinded bids and make their deposits.

• Revealing Bids (RB): After the bidding period, bids are revealed and a winner is determined.

• Finished (F): After the reveal period, the winning bidder withdraws the di↵erence between

their deposit and their bid; other bidders withdraw their entire deposits.

• Canceled (C): No winner is declared and all bidders withdraw their entire deposits.

Each transition represents a method in the smart contract. For example, during the bidding period,

participants invoke the bid function in order to submit their bids and deposits. After the bidding

period, bidders call the reveal function to reveal their blinded bids. Finally, after the reveal period,

bidders call the withdraw function to get their deposits back. Between square brackets are conditions

that must be satisfied in order to invoke a state transition. For example, close cannot be called

until after the bidding period.

Init ABB RB

C F

create

bid

cancelABB
cancelRB

unbid withdraw

close

[block timestamp()

> t.creation time

+ 5 * t.days]

reveal
[vector::length(&values)==

vector::length(&secrets)]

finish

[block timestamp()

> t.creation time

+ 10 * t.days]

Figure 3.1: Blind Auction Transition System

CHAPTER 3. VERIMOVE: A MODEL CHECKING FRAMEWORK FOR THE MOVE LANGUAGE 23

3.5 VeriMove: Design and Verification Workflow

VeriMove is an open-source, web-based, model checking tool designed for collaborative develop-

ment of Move smart contracts with build-in version control enabling branching, merging, and history

viewing. This section describes the components of the tool and its workflow. VeriMove includes

two major additions/modifications to VeriSolid: the language parser and the finite state machine

(FSM) generator.

3.5.1 VeriSolid

VeriSolid [104] is an open-source, web-based, model checking framework built on top of We-

bGME [101] and FSolidM [102, 103]. It allows developers to specify their program functionality

using an abstract, graphical representation in the form of a transition system. The desired system

properties are encoded using various natural language templates, which can verify safety, liveness,

and deadlock freedom properties. In order to verify a smart contract, the transition system is

converted into a Behavior-Interaction-Priority (BIP) model [17], which is then translated into an

NuSMV model [38]. The templated properties are used to generate Computation Tree Logic (CTL)

specifications [15, 39]. State space exploration in the BIP model can verify deadlock freedom prop-

erties and the NuSMV model can verify safety and liveness properties using the nuXmv model

checker [32]. Once the developer is satisfied with the model and properties, VeriSolid gener-

ates the equivalent Solidity source code. This architecture is replicated and adapted for the Move

language in VeriMove.

3.5.2 Language Parser

Much of the functionality in VeriSolid and VeriMove requires complex statements to be broken

up into a series of single expressions. In VeriSolid, this process was done largely manually for

Solidity statements, which makes it di�cult to extend to other languages, such as Move. Thus,

VeriMove extracted this functionality into a modular component called the language parser. Given

the grammar definition of a language, the language parser automatically generates a parsing tree,

which is used to obtain the simplified expressions. The move-tree-sitter package is used to build

the syntax tree for parsing Move statements. This feature makes VeriMove more flexible than

VeriSolid, as only the grammar definition needs to be changed to support other languages.

3.5.3 Finite State Machine Generator

Developers using VeriSolidmust adhere to a highly restricted format when writing smart contracts,

which can be a time-consuming and labor-intensive task. Thus, VeriMove implements the ability

to automatically create a transition system from Move source code. To accomplish this, the FSM

generator creates an initial state and a core state. A transition is added from the initial state to the

core state which initializes the smart contract. Then, all smart contract functions are represented

as self-looping transitions in the core state. This generates a preliminary transition model that can

be modified by the developer for their application. Due to the language parser, this functionality is

extendable to other languages.

CHAPTER 3. VERIMOVE: A MODEL CHECKING FRAMEWORK FOR THE MOVE LANGUAGE 24

1 module BlindAuction::blind_auction {

2 struct Bid has key, store {

3 blinded_bid: vector<u8>,

4 deposit: u128,

5 }

6 struct State has key {

7 bids: Table<address, vector<Bid>>,

8 pending_returns: Table<address, u128>,

9 highest_bidder: address,

10 highest_bid: u128,

11 }

12 fun withdraw() acquires State {

13 let s = borrow_global_mut<State>(self());

14 let mut_amount = Table::borrow_mut_with_default(&mut s.pending_returns, &sender(), 0);

15 if (*mut_amount > 0) {

16 if (sender() != s.highest_bidder) {

17 transfer(sender(), *mut_amount);

18 } else {

19 transfer(sender(), *mut_amount - s.highest_bid);

20 };

21 *mut_amount = 0;

22 };

23 }

24 }

Figure 3.2: Withdraw Function Move Implementation

F AS1

{let mut amount = Table::borrow mut with default(

&mut s.pending returns, &sender(), 0);}

[*mut amount  0]

AS2

[*mut amount > 0]

AS3
[sender() 6=
s.highest bidder]

AS4
[sender() = s.highest bidder]

AS5

{transfer(sender(),
*mut amount);}

{transfer(sender(),
*mut amount - s.highest bid);}

{*mut amount = 0;}

Figure 3.3: Augmented Model of the withdraw Transition

CHAPTER 3. VERIMOVE: A MODEL CHECKING FRAMEWORK FOR THE MOVE LANGUAGE 25

User Input

Smart Contract as

Transition System

Natural Language

Properties

Language Parser

Augmented

Transition System

BIP Model

CTL Properties

Verification

Output

Generated

Code

1
Code

Input
FSM Generator

2

3

4

5

6

7

8

9

Figure 3.4: Design and Verification Workflow

3.5.4 Augmented Transition System

A transition system is a high-level, abstract representation of the smart contract. The logic of each

transition is specified by a smart contract function, which is written by the user. Figure 3.2 gives the

Move code for the withdraw transition in the BlindAuction smart contract. During verification of

system properties, each abstract transition is broken down into its individual Move expressions. The

result is called the augmented transition system. Figure 3.3 gives the augmented transition system

generated by the withdraw transition code in Figure 3.2. Each Move statement that modifies

the state of the smart contract is given a transition, notated by curly brackets. Likewise, each

conditional statement is given a transition, notated by square brackets. Note that line 13 is ignored

by the augmented transition system as it only acquires access to a global variable, which does not

modify the state of the smart contract and is not a conditional check.

3.5.5 VeriMove Workflow

Figure 3.4 shows the steps of the VeriMove design flow. The components of VeriMove that were

added to VeriSolid are highlighted in yellow. Mandatory steps are represented by solid arrows,

while optional steps are represented by dashed arrows. In step 1), the developer input is given

in the form of a transition system and system properties. Like VeriSolid, VeriMove utilizes a

graphical user interface (GUI) for creating the transition system representation of the smart contract

and provides natural language templates for specifying smart contract properties. If the developer

already has Move source code, then they can use the FSM generator to automatically create the

CHAPTER 3. VERIMOVE: A MODEL CHECKING FRAMEWORK FOR THE MOVE LANGUAGE 26

transition system and use the GUI to further refine the model. In step 2), if code input is provided,

the FSM generator will convert the code into a preliminary transition system. The verification

loop starts at the next step. In step 3), the language parser simplifies the Move statements in

each transition into a series of simple Move expressions. Steps 4-8) are identical to the workflow in

VeriSolid [104]. Here, the transition system is converted to an augmented transition system, which

is converted into a BIP model. The natural language properties are converted into CTL properties.

The BIP model and CTL properties are given to an NuSMV solver which verifies the model with

respect to the properties. Finally, once the developer is satisfied with the verified model, step 9)

generates the equivalent Move source code.

3.6 Operational Semantics for Move

This section outlines the operational semantics necessary for the Move language. VeriMove sup-

ports a subset of the Move language. The following are the Move statements that are supported.

hstatementi ::=

| hdeclarationi ;

| @expression ;

| return (@pure)? ;

| if (@expression)hstatementi

(else hstatementi)?

| while (@expression) hstatementi ;

| { (hstatementi) ⇤ }

hdeclarationi ::= let @identifier (: @type)? (= @expression)?

VeriMove supports the following custom types. Note that there is no heventi type in Move. Events

are specified using resources.

hresourcei ::= resource struct @identifier { (@identifier: @type,) ⇤ }

The operational semantics of the transition system for VeriMove are identical to that of

VeriSolid [104]. Likewise, the operational semantics of the supported Move statements are identi-

cal to that of Solidity except for the FOR transition, which should be removed since Move does not

support for-loops. The following are statement transitions that need to be modified.

VARIABLE
Decl(�,Type,Name)! h(�0

, x)i
h(�, N), let Name: Type;i ! h(�0, x), ·i

VARIABLE-ASG
Eval(�,Exp)! h(�0

, x), vi
h(�, N), let Name: Type = Exp;i ! h(�0, x), {let Name: Type; Name = v; }i

CHAPTER 3. VERIMOVE: A MODEL CHECKING FRAMEWORK FOR THE MOVE LANGUAGE 27

3.7 Empirical Evaluation

3.7.1 Implementation

Similar to VeriSolid, VeriMove was implemented as a web-based application utilizing We-

bGME [101] and FSolidM [102, 103] as its GUI for specifying the transition system with an NuSMV

solver for model verification. The following are the di↵erences between the implementation of

VeriSolid [104] and the implementation of VeriMove: 1) VeriSolid is a NodeJs application

whereas VeriMove is a React application, 2) VeriMove separates the language parser as a mod-

ular component, and 3) VeriMove implements an FSM generator algorithm for pre-written Move

smart contract source code.

3.7.2 Experimental Setup

The performance of VeriSolid and VeriMove are compared on the same set of smart contracts:

ERC20, ERC721, and BlindAuction. The contracts ERC20 and ERC721 are implementations of the

ERC20 Token Standard [51] and ERC721 Non-Fungible Token Standard [52], respectively. The

contract BlindAuction is an implementation of the blind auction example from the Solidity doc-

umentation [143], described in Section 3.4. These contracts were implemented in both VeriSolid

and VeriMove. Each contract was given a series of verification properties and once verified the

smart contract code was generated. The generated contracts and verification output can be found

in the VeriMove GitHub repository1 along with the implementation.

3.7.3 Results

Both VeriSolid and VeriMove were able to successfully verify the contract properties. Tables 3.1

and 3.2 show the performance results of the verification of VeriSolid and VeriMove on these

smart contracts. The meaning of the columns in the tables are as follows. “Contract Length” refers

to the number of lines of code (excluding whitespace) in the generated contract. Recall that in

both VeriSolid and VeriMove the user-defined transition model is converted into a BIP model

and then into an NuSMV model. “Total States” refers to the total number of states in the final

NuSMV model. “Reachable States” refers to the number of states in the final NuSMV model that

are reachable given the smart contract control flow logic. Finally, “System Diameter” is the depth

of the state-space search during verification.

Table 3.1: Verification Performance of VeriSolid

Smart

Contract

Contract

Length

System

Diameter

Reachable

States

Total

States

ERC20 132 7 23 231

ERC721 155 7 23 232

BlindAuction 149 11 41 251

1https://github.com/Veneris-Group/VeriMove

https://github.com/Veneris-Group/VeriMove

CHAPTER 3. VERIMOVE: A MODEL CHECKING FRAMEWORK FOR THE MOVE LANGUAGE 28

Table 3.2: Verification Performance of VeriMove

Smart

Contract

Contract

Length

System

Diameter

Reachable

States

Total

States

ERC20 213 19 52 263

ERC721 249 18 59 270

BlindAuction 215 17 51 262

3.7.4 Discussion and Limitations

As discussed in Section 3.1, the current verification tools for Move (the bytecode verifier and the

Move Prover) can only verify properties within a single function. Model checking allows for

the verification of global properties that occur across functions. By successfully generating all

contracts and verifying all contract properties, VeriMove has shown that model checking is a

feasible approach for verifying global properties.

In terms of performance, Tables 3.1 and 3.2 show that in every contract VeriMove contains

more total states, more reachable states, and requires a larger system diameter to verify the contracts

compared to VeriSolid. This is due to the fact that Move requires more statements to perform

the same functionality compared to Solidity. Thus, its augmented transition system contains more

states, and the model checker is required to check more states. This is shown by the length of each

contract in Move and Solidity. On average, Move required 35% more lines than Solidity for the same

contract. This could be an issue in large contracts as model checking is susceptible to state-space

explosion. As discussed in Section 2.4, Move was designed to be easily verified by the bytecode

verifier and the Move Prover; a static analyzer and theorem prover, respectively. Therefore, it

is not optimized for model checking verification, which is reflected in its results. However, these

numbers are not large enough to render model checking an infeasible approach to formal verification

in Move.

3.8 Conclusion

This chapter proposed VeriMove, which modified and extended VeriSolid to support the formal

verification of Move smart contracts. First, a detailed comparison of the Move and Solidity was given,

discussing the main di↵erences between the design of the languages and their trade-o↵s. Next, the

design and workflow of VeriMove was outlined. This included the introduction of the language

parser component that allows the VeriSolid framework to be easily extended to other languages,

and an FSM generator to alleviate the tedious nature of the model checking process. Additionally, the

operational semantics introduced for the verification of a Move smart contract were listed. Finally,

standard and widely used smart contracts were implemented in both VeriSolid and VeriMove,

comparing their performance. The results showed that model checking is a feasible approach for

verifying global properties in Move.

Chapter 4

Gas Optimization of Move Smart

Contracts

4.1 Introduction

The gas of a smart contract is the cost of executing its logic on the blockchain. The gas meter refers

to the mechanism that determines how much gas should be charged for a given smart contract. Gas

is necessary to pay for the consumption of blockchain resources and to avoid excessive and malicious

use of the network. However, it can also pose unexpected costs to developers. The purpose of

gas optimization is to minimize the gas costs of a smart contract while maintaining equivalent

functionality. Gas optimization is a highly researched area in Solidity, but as of the time of writing,

there is no equivalent work done for the Move language. This thesis presents the first work in the

field of gas optimization in Move.

In this thesis, Aptos [156] is chosen as the underlying platform for studying gas optimization of

the Move language. It is currently the leading blockchain platform that utilizes the Move language,

and most importantly it was the first blockchain platform to implement a gas meter for the Move

language. Other Move-enabled blockchains such as OpenLibra [1] and StarCoin [147] have yet to

implement gas meters. Sui [148] has modified core Move and integrated its own features. In the

interest of establishing a baseline for gas optimization in the Move language, the analysis of gas

optimization on Sui’s version of Move should be left as future work.

The contribution of this chapter is summarized as follows:

• Detail the nuances of Aptos’s gas meter for Move.

• Enumerate 11 gas optimization patterns for Move.

• Enumerate 5 patterns that reduce contract time complexity, but have no e↵ect on the gas cost.

• Provide concrete examples which implement the proposed optimization patterns and evaluate

their e↵ectiveness in typical Move smart contracts. The experiments show that the proposed

gas optimization patterns reduce gas consumption in a typical smart contract by 7 - 56%.

The rest of the chapter is organized as follows. Section 4.2 details the gas calculation of Move

smart contracts in Aptos. Section 4.3 summarizes prior work on gas optimization in Solidity, and

29

CHAPTER 4. GAS OPTIMIZATION OF MOVE SMART CONTRACTS 30

discusses how it can be applied to Move. Section 4.4 provides gas optimization patterns in Move with

concrete examples of these patterns. Section 4.5 identifies patterns that lower the time complexity

of a smart contract, but have no e↵ect on the gas cost. Section 4.6 gives empirical results of sample

smart contracts to validate, evaluate, and quantify the optimization patterns proposed in Section 4.4.

Finally, Section 4.7 concludes the work.

4.2 The Aptos Gas Meter

The gas of a smart contract is the cost of storing its items and executing its logic on the blockchain.

It is necessary to pay for the use of blockchain resources and to avoid excessive consumption of

resources. The gas meter refers to the mechanism that determines how much gas should be charged

for a given smart contract deployment and invocation.

In Aptos, the native token is APT and the unit of gas is Octa. However, the Aptos gas meter

operates using internal gas units where

100 internal gas units = 1 Octa = 10�8 APT (4.1)

This gives a more fine-grain measurement of gas, which is then rounded after all calculations have

been completed. When a transaction is submitted, the user must include, among others, the following

fields:

• max gas amount: The maximum number of gas units that the transaction sender is willing to

spend to execute the transaction. This determines the maximum computational resources that

can be consumed by the transaction.

• gas price: The gas price per unit the transaction sender is willing to pay, usually determined

by the market.

When the transaction is executed by the MoveVM, it keeps a tally of the amount of gas used

according to the gas meter. The total gas charged for the transaction is

total gas fee = (gas used)⇥ gas price (4.2)

If the gas used surpasses max gas amount, then the transaction is aborted. Thus, the maximum

amount a user can be charged is (max gas amount)⇥ (gas price).

The gas used by a transaction consists of summing the gas associated with the size of its payload,

the virtual machine instructions it executes, and the global storage it accesses. This is explicitly

expressed as follows.

gas used = (payload gas) + (instruction gas) + (storage gas) (4.3)

Each gas consumption type is discussed next.

4.2.1 Payload Gas

The payload gas is the cost associated with publishing a transaction to the blockchain, i.e. the

transaction size. When publishing a module, the bytecode is stored on the blockchain. Thus, the

CHAPTER 4. GAS OPTIMIZATION OF MOVE SMART CONTRACTS 31

transaction size depends on the length of the bytecode. When publishing a transaction script,

module functions and their inputs need to be stored on the blockchain. Thus, the transaction size

also depends on the size of the input parameters.

Equations 4.4 and 4.5 show the payload gas calculation. Every transaction is automatically

charged 1, 500, 000 internal gas units (15, 000 Octa). This is sometimes called intrinsic gas. If the

bytecode is greater than 600 bytes, the transaction is charged 2, 000 internal gas units for each of

the excess bytes [9]. This is to prevent abuse of the network.

large tx penalty = max(0, (tx size� 600 bytes)⇥ 2, 000) (4.4)

payload gas = 1, 500, 000 + large tx penalty (4.5)

4.2.2 Instruction Gas

The instruction gas is the gas associated with the execution of the virtual machine operations of

a transaction. Each instruction of the MoveVM has been assigned a gas cost. Typically, each

operation charges both a fixed base gas and a variable amount of gas proportional to the parameter

sizes associated with the operation [91].

Since the MoveVM is a 64-bit stack-based virtual machine, instructions operate on exactly 64

bits. Thus, operations such as arithmetic, bitwise, boolean, and comparison charged per 64 bits. As

a result, from the perspective of the MoveVM, there is no distinction between u8 and u64 integers.

Operations on u8 and u64 integers will result in the same gas consumption. Conversely, operations

on u128 integers will generally require more gas, since they require at least one additional register.

Move modules are not executed when published to the blockchain. However, the instruction

gas associated with a module function will be considered as the amount of gas it consumes when a

transaction script executes it.

4.2.3 Storage Gas

The storage gas is the gas associated with accessing global storage on the blockchain. There are four

types of interactions with resources in global storage. (i) A resource can be created or instantiated

via move to. (ii) The fields of a resource can be read via borrow global. (iii) The fields of resources

can be written to or updated via borrow global mut. (iv) A resource can be deleted or deallocated

via move from. Currently, creation, reading, and writing consume gas, whereas deletion does not

consume any gas. Aptos has expressed that in the future it may refund gas for the deallocation of

resources. At the time of writing, however, this has not yet been implemented.

As discussed in Section 2.4.1, an item is a generic term used for any key-value pair in global

storage. The utilized gas consumed by each access type (except deletion) is calculated as follows [92].

utilized gas = items⇥ (per item gas) + bytes⇥ (per byte gas) (4.6)

The first term is the base cost for accessing an item. This amount is the constant up-front cost of

the access type. The second term accounts for the size of the item, charging gas proportional to the

size of the item accessed. Note that bytes in Equation 4.6 refers to the total number of bytes in all

CHAPTER 4. GAS OPTIMIZATION OF MOVE SMART CONTRACTS 32

fields of a resource, even if only once field was accessed. Table 4.1 gives the amount of gas charged

for each access type [92].

Table 4.1: Storage Gas Fees

Operation Internal Gas Units Octas

per-item read 300, 000 3, 000

per-item write 300, 000 3, 000

per-item create 300, 000 3, 000

per-byte read 300 3

per-byte write 5, 000 50

per-byte create 5, 000 50

Original Storage Gas Calculation

Consider the calculation of the storage gas associated with the global read operation. Note that

this description holds analogously for the other access types. If the smart contract does not call

borrow global, then the storage gas charged is 0. However, by the design of Equation 4.6, if any

read operation is performed, then the minimum amount of gas charged for that access is the per

item read, or 300, 000 internal gas units. This is denoted by gmin. Aptos sets a maximum allowable

utilized gas, gmax, to 100⇥ gmin. In the case of a global read, this is 30, 000, 000 internal gas units.

If the gas utilized by the read operation surpasses gmax, then an out-of-gas exception is thrown and

the smart contract is aborted. If the gas utilized by the read operation falls between gmin and gmax,

then let g denote this amount and u = g/gmax be the ratio of gas utilized. The following gives the

formula, called the utilization curve, for the storage gas charged to a smart contract that utilizes g

amount of gas.

storage gas(u) = gmin +
b
u � 1

b� 1
(gmax � gmin) (4.7)

In particular, Aptos uses a base b = 8192. This function is graphed in Figure 4.1. The vertical

axis is divided by gmax in order to make the units storage access agnostic. Note, that there is an

independent utilization curve for each of the global access types: read, write, and create.

Current Storage Gas Calculation

On June 13, 2023, Aptos depreciated the utilization curve [79]. In the current version of the gas

meter, the utilized gas is the amount of gas charged for the access operation, thus the new utilization

curve is the identity function. Using the above notation, storage gas(u) = u⇥ gmax = utilized gas.

One reason the utilization curve was depreciated is that it allowed for unorthodox gas optimiza-

tion techniques. For example, consider a smart contract which requires a large number of read

operations. Since the reading and writing utilization curves are independent, one could save on gas

by splitting half of the reads into write operations. Under the original utilization curve, this could

potentially save a huge amount of gas if the read operations were past 60% utilization. In the new

utilization curve, this technique would result in no di↵erence in storage gas costs.

CHAPTER 4. GAS OPTIMIZATION OF MOVE SMART CONTRACTS 33

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ratio of utilized gas

ra
ti
o
of

st
or
ag
e
ga
s
ch
ar
ge
d

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ratio of utilized gas

ra
ti
o
of

st
or
ag
e
ga
s
ch
ar
ge
d

Figure 4.1: Aptos’s Old (left) and New (right) Utilization Curves for Global Storage Accesses

4.3 Related Work

To date, this thesis is the first work that analyzes gas optimization for the Move language. The

majority of the research on gas optimization is done for Solidity on the Ethereum blockchain [99,

139, 140].

Broadly, there are three ways to frame gas optimization. The first is in the field of vulnerability

detection. An out-of-gas exception occurs when the smart contract uses more gas than the allowed

gas limit. In some instances, this can be used as a denial-of-service attack on the smart contract.

This is considered gas optimization since the parts of smart contracts susceptible to this attack

inherently use a lot of gas. Fixing this vulnerability results in a more gas-e�cient smart contract.

The authors of [63] use symbolic execution to detect specific out-of-gas exception patterns. The

authors of [98] use fuzzing techniques in order to find inputs that cause a high gas output.

A second way to frame gas optimization is to abstract the problem to code optimization [3, 26,

36, 54, 113, 115]. If the smart contract code is optimized, then the virtual machine will perform

fewer operations, and thus gas consumption will be reduced. The authors of [36] developed the

static analyzer tool, GASPER, which applies parallelized symbolic execution to Solidity bytecode

to identify specific patterns such as dead code, opaque predicates, and expensive operations in loops.

Lastly, the authors of [115] identify three loop patterns to reduce the number of virtual machine

operations and global storage accesses.

Finally, gas optimization can be viewed as its own unique subject. The gas meter is not iso-

morphic to “the number of virtual machine operations”. For example, addition and division are

often given the same gas price per operation, even though division typically requires more virtual

machine operations to compute. Some techniques will make the smart contract less e�cient in the

strict sense of virtual machine operations but nonetheless, reduce gas consumption. The authors

of GASPER extended their work to develop GasReducer [37], which identifies 24 di↵erent op-

timization patterns in bytecode. The authors of [2] created a tool called GASOL, which targets

optimizing gas consumption associated with the usage of storage operations by replacing multiple

accesses to global memory with local variable operations.

The remaining sections consider the application of this large body of research to the Move

language. Generally, code optimization techniques that operate on the source-code level can be

CHAPTER 4. GAS OPTIMIZATION OF MOVE SMART CONTRACTS 34

directly applied. However, code optimization techniques that operate on the bytecode level cannot

be directly applied, since the EVM and MoveVM are fundamentally di↵erent. Work on the out-of-

gas vulnerabilities in Ethereum generally detect malicious use of the fallback function. However,

Move does not have dynamic dispatching, so these techniques do not apply. Finally, some techniques

related to reducing the number of global storage accesses can be modified for Move.

4.4 Gas Optimization Patterns

Generally, gas optimization stands very close to time and space complexity optimization. The aim

is to minimize the number of virtual machine operations and the amount of global storage accessed

during a transaction. However, there is often a trade-o↵ between time and space complexity with

many ways to implement the same specification. Decreasing memory use may result in more virtual

machine operations, and decreasing virtual machine operations may require an increase in memory

use; in which case, it is not clear how to minimize gas consumption.

This section gives both general principles and concrete design patterns for optimizing the gas

consumption of Move smart contracts on Aptos.

4.4.1 Payload Gas

The gas associated with the payload is typically much less than the gas associated with instructions

and global storage. Thus, for most applications, its contribution is negligible. However, if the

payload greatly exceeds 600 bytes, then it may cause a noticeable increase due to Aptos’s large

transaction penalty. The following general principles are given for payload gas optimization.

1) Minimize the Length of Modules: The code of a published module is stored on the

blockchain, which consumes gas. Minimizing the length of the module, i.e. the number of bytes

required to store its bytecode, reduces the total gas cost. Some instances include removing dead or

unnecessary code, reducing redundant code, avoiding unnecessary additional variables, using stan-

dard libraries, and separating out the module into multiple smaller modules. Note that comments

do not have an e↵ect on this calculation, since the blockchain stores the bytecode and not the source

code.

2) Minimize the Size of Parameters in Transaction Scripts: When executing a trans-

action script, the payload may contain the values of the parameters given by the user, which are

stored on the blockchain and thus consumes gas. Minimizing the number and size of these param-

eters will reduce the total gas cost. For example, combining many small functions that require a

lot of parameters into one larger function, and also avoiding passing resources as parameters into

functions.

4.4.2 Instruction Gas

The gas associated with virtual machine instructions is akin to the time complexity of the smart

contract. In general, less virtual machine operations results in less gas consumption. However, this is

not always possible without sacrificing the necessary functionality. The following general principles

are given for instruction gas optimization.

CHAPTER 4. GAS OPTIMIZATION OF MOVE SMART CONTRACTS 35

1 public entry fun short_circuit(addr: address) {

2 if (cheap_condition() && expensive_condition()) {

3 //
4 // operations
5 //
6 };

7 }

1 public entry fun short_circuit(addr: address) {

2 if (cheap_condition() || expensive_condition()) {

3 //
4 // operations
5 //
6 };

7 }

Figure 4.2: Short Circuit

1) Limit Function Calls: One of the most expensive instruction gas operations are function

calls [91]. The gas saved from the lack of a function call is always larger than the gas gained from a

larger module size. Therefore, abstracting smart contract functionality into helper functions should

be avoided as much as possible. For instance, it is very common for programmers to write getter

functions which are a single line or very few lines of code. Removing these is a small change, which

saves a large percentage of gas (see Table 4.2). However, having large and complicated functions

makes testing more di�cult. It is up to the developer to find an acceptable balance.

2) Minimize Vector Element Operations: Vector operations charge gas on a per-element

basis and are more expensive than operations on local variables. Thus, accessing vectors can be

treated like accessing the global state, which means the principles 1) and 3) from Section 4.4.3 apply

analogously for vectors. If one wishes to operate on an element from a vector more than once, then

it should be copied to a local variable and then updated after all calculations are performed. Lastly,

a vector element should be directly updated, rather than deleted and recreated.

3) Short Circuit: When using the logical connective AND (&&), if the first expression evaluates to

false, then the second expression will not be evaluated. Likewise, when using the logical connective

OR (||), if the first expression evaluates to true, then the second expression will not be evaluated.

Thus, continued expressions in if-statements and while-loops should be ordered by increasing gas

cost. If a cheap expression short-circuits the condition check, then gas is saved on evaluating the

more expensive expressions. Figure 4.2 shows an example with the AND and OR connectives.

4) Write Values Explicitly: Since all virtual machine operations consume gas, any constant

value should be written explicitly rather than implicitly computed via the smart contract.

5) Avoid Redundant Operations: Since all virtual machine operations consume gas, re-

dundant operations should be avoided. For example, Move has a bytecode verifier that checks

for common vulnerabilities such as integer overflow/underflow. Thus, checking for this in a smart

contract is redundant and unnecessary.

4.4.3 Storage Gas

The gas associated with global storage is akin to the space complexity of the smart contract. In

general, less accesses to global storage will result in less gas consumption. Moreover, storage gas will

typically dominate both payload and instruction gas. Thus, it should be given the most attention

when optimizing smart contract gas. The following general principles are given for storage gas

optimization.

1) Operate on Local Variables: Operating directly on resources and resource fields consumes

significantly more gas than operating on local variables. Whenever a smart contract is operating on

the values of a resource, its ownership should be borrowed by a local variable. If necessary, those

values can be transferred back to the resource at the end of the function.

CHAPTER 4. GAS OPTIMIZATION OF MOVE SMART CONTRACTS 36

1 public entry fun bad_resource_write(addr: address)

2 acquires MyResource{

3 while (/* condition */) {

4 let resource =

5 borrow_global_mut<MyResource>(addr);

6 //
7 // operate on resource.field
8 //
9 };

10 }

1 public entry fun good_resource_write(addr: address)

2 acquires MyResource {

3 let resource = borrow_global_mut<MyResource>(addr);

4 let intermediate = resource.field;

5 while (/* condition */) {

6 //
7 // operate on intermediate
8 //
9 };

10 resource.field = intermediate;

11 }

Figure 4.3: Loop Refactor - Operating on Local Variables

1 public entry fun bad_variable_storage(addr: address)

2 acquires MyResource {

3 let resource = borrow_global<MyResource>(addr);

4

5 let x8: u8 = resource.x8;

6 let x32: u64 = resource.x32;

7 let x24: u64 = resource.x24;

8 }

1 public entry fun good_variable_storage(addr: address)

2 acquires MyResource {

3 let resource = borrow_global<MyResource>(addr);

4 let x: u64 = resource.x;

5

6 let x8: u8 = (x & 0xF);

7 let x32: u64 = ((x >> 8) & 0xFFFF);

8 let x24: u64 = ((x >> 40) & 0xFFF);

9 }

Figure 4.4: Variable Packing

Figure 4.3 shows an example of implementing this principle. When using a resource field value

in a loop, one should first store its field value in an intermediate local variable, and do all loop

operations on this local variable. At the end of the function, the resource field is updated. This

limits the number of accesses to the resource to a maximum of two, rather than the number of loop

iterations.

2) Variable Packing: There are two facts about Move’s gas meter that this pattern utilizes.

First, global storage access consumes the most gas of any operation. Thus, one should aim to make

as few as possible. Second, when accessing a resource, the per-byte charge consists of all fields in

the resource, not just the ones that were accessed. Variable packing refers to storing many variables

in a single resource field to optimize the e�ciency of each storage access.

The example given in Figure 4.4 contains variables x8, x32, and x24 that will only ever store 8,

32, and 24 bits of information, respectively. The naive way of storing these variables is to separate

each into its own field. However, storage gas can be saved by packing these variables into a single

u64 integer. The per-byte gas of the resource access in the left figure is more expensive than the

instruction gas cost of the operations in the right figure.

3) Resource Update: There is currently no incentive to deallocate global storage. Thus, in

order to minimize gas consumption, unused resources should be overwritten rather than deallocating

and creating new resources. Figure 4.5 shows an example of this optimization.

4) Read Instead of Write: Writing to a resource is more expensive per byte than reading (see

Table 4.1). Thus, any resource access using borrow global mut that does not update the resource

should be replaced with borrow global.

4.5 Non-optimization

In addition to giving principles that will minimize gas consumption, it is equally useful to know

what does not a↵ect gas consumption.

CHAPTER 4. GAS OPTIMIZATION OF MOVE SMART CONTRACTS 37

1 public entry fun bad_resource_update(new_value: u128)

2 acquires MyResource {

3 // transfer from global storage
4 let resource = move_from<MyResource>(&signer);

5

6 // deallocate
7 MyResource {value: _} = resource;

8

9 // create new resource
10 move_to<MyResource>(&signer, MyResource {

11 value: new_value

12 });

13 }

1 public entry fun good_resource_update(new_value: u128)

2 acquires MyResource {

3 let resource = borrow_global_mut<MyResource>

4 (&signer);

5 resource.value = new_value;

6 }

Figure 4.5: Resource Update

1) Equivalent Operations: Basic arithmetic operations {add, sub, mul, div, mod} cost the

same amount of gas, even though division, for example, typically requires more computation than

addition. Bit-wise operations {and, or, xor, left shift, right shift} cost the same amount of gas.

Similarly, the comparison operations {<,>,,�} cost the same amount of gas, and the operations

{=, 6=} both cost slightly less.

2) Reads/Writes are Never Partial: Reading or writing only one field from a resource may

save a little gas with respect to the instruction gas, but it does not save any gas with respect to

storage gas. When borrow global mut is called and a resource field is updated, the per-byte cost

of the update is for the entire resource, not just the updated field.

3) u8 Integers: There is no di↵erence between doing operations with u8 integers and u64

integers, both locally and globally. This is because MoveVM has 64-bit registers. However, doing

operations with u128 integers will cause an increase in gas usage.

4) Ordering Fields in Resources: The order of the fields of the resource does not matter.

All fields of a resource occupy their own space in storage. One can pack variables within a field, but

not between fields.

5) Deallocation of Resources: Currently, Aptos is lacking any mechanism for rewarding the

destruction of resources via move from. Although, they have expressed interest in adding this in the

future.

4.6 Experiments

This section presents the results of an experimental evaluation of the gas optimization patterns that

were identified in Section 4.4. Through this, the gas savings of each gas optimization pattern are

validated, evaluated, and quantified. While Move is rapidly gaining popularity, it has yet to become

a standard in decentralized application development. As a result, there are fewer examples of smart

contracts deployed to Aptos as well as a lack of developer tools and standardized benchmarks.

Thus, a set of sample smart contracts have been created1 to isolate each gas optimization pattern.

Table 4.2 compares the gas consumption of the original and optimized smart contracts measured in

Octa. The rightmost column is the percent decrease of gas in the optimized contract. The patterns

“Minimize the Length of Modules”, “Minimize the Size of Parameters in Transaction Scripts”, and

“Avoid Redundant Operations” were omitted as these are general principles rather than concrete

design patterns.

1https://github.com/Veneris-Group/Move-Gas-Optimization-Patterns

https://github.com/Veneris-Group/Move-Gas-Optimization-Patterns

CHAPTER 4. GAS OPTIMIZATION OF MOVE SMART CONTRACTS 38

Table 4.2: Gas savings comparison of optimization patterns

Gas Optimization Pattern
Original

Cost

Optimized

Cost

Gas Savings

Percent

Limit Function Calls 47 26 44.7

Minimize Vector Element Operations 41 30 26.8

Short Circuit 2372 2 99.9

Write Values Explicitly 410 2 99.5

Operate on Local Variables 62 27 56.5

Variable Packing 746 630 15.5

Resource Update 130 120 7.7

Read Instead of Write 3663 56 98.5

The magnitude of the gas decrease cannot be used to compare the e↵ectiveness of each optimiza-

tion pattern as it is dependent on the number of virtual machine operations, the number of global

memory accesses, and the size of local and global variables in the particular smart contract. The

percentage decrease is more stable with respect to changes in the smart contract and gives a better

measurement of the e↵ectiveness of a pattern.

The gas optimization patterns “Minimize Vector Element Operations”, “Short Circuit”, “Write

Values Explicitly”, and “Read Instead of Write” heavily depend on the particular smart contract.

Using “Short Circuit” in Figure 4.2 as an example, the gas savings depends on the cost of the

statement expensive condition relative to cheap condition. The results validate that these gas

patterns reduce gas consumption, but their e↵ectiveness depends on the application.

The gas optimization patterns “Variable Packing” and “Resource Update” depends on the size of

the global storage that is being accessed. The sample smart contracts use moderately sized resources,

and the percent decrease is small. For applications with large global variables, these patterns are

e↵ective at reducing gas consumption. However, for applications accessing a small number of or

modestly sized resources, the impact may be negligible.

Lastly, the gas optimization patterns “Limit Function Calls” and “Operate on Local Variables”

are the most stable with respect to changes in the smart contract. Both patterns result in a sub-

stantial percent gas decrease.

4.7 Conclusion

Move is a new smart contract language that o↵ers superior security and verifiability compared to

existing smart contract languages. As it becomes more popular, gas optimization for Move smart

contracts will become more important to developers. This thesis is the first to apply the vast research

on gas optimization in Solidity to the Move language using Aptos as the underlying platform. This

chapter detailed Aptos’s gas meter, proposed 11 gas optimization patterns, and identified 5 patterns

that decrease the time complexity of a smart contract but have no e↵ect on gas consumption. Sample

contracts were implemented for each proposed gas optimization pattern. The results showed that

the proposed gas optimization patterns reduce gas consumption on a typical Move smart contract

by 7� 56%.

Chapter 5

Automated Auditing of TOD

Vulnerabilities

5.1 Introduction

The transaction order dependency (TOD) vulnerability is present when a smart contract depends

on the global state of the blockchain. This can be exploited as a result of two common features

of blockchain platflorms. First, when a smart contract transaction is submitted to the network,

it is first added to a public waiting area pending validation, called the mempool. Eventually, the

transaction is selected by a validator, grouped into a block, and its instructions executed by all

nodes in the blockchain network. Second, a priority fee is included in each transaction, which is a

tip given to the validator of the transaction. This incentivizes validators to choose transactions in

the mempool with the highest priority fee [11, 50, 142, 149]. In the front running attack, an attacker

observes honest transactions in the public mempool which contain TOD vulnerabilities. Then, the

attacker injects their transaction first by including a large priority fee, thus modifying the global

blockchain state and consequently the final output of the honest transactions in their favor [12, 153].

This thesis investigates the automated detection and rectification of the TOD vulnerability. In

detail, a static analysis approach is proposed to locate and rectify TOD vulnerabilities. In particular,

an algorithm is proposed that extracts the data dependencies of a smart contract to determine how

a change in its state a↵ects the transaction outcome. This algorithm is implemented as a prototype

tool for Solidity. It uses Slither [54], a static analyzer for Solidity, to extract control and data

dependencies of smart contracts. This prototype tool is evaluated on a benchmark suite of 51 Solidity

smart contracts. The results show that the proposed approach rectifies the vulnerabilities with only

a few changes to the original smart contract.

In summary, this chapter makes the following contributions:

• The problem of automated detection and rectification of the TOD vulnerability is studied.

• A novel algorithm is proposed to automatically detect and rectify TOD vulnerabilities.

• A prototype implementation of the proposed approach is built.

• A smart contract benchmark suite of 51 smart contracts is developed to validate and evaluate

39

CHAPTER 5. AUTOMATED AUDITING OF TOD VULNERABILITIES 40

the proposed methodology. Experiments show this algorithm can successfully detect and rectify

TOD vulnerabilities with few modifications to the original smart contract.

The rest of the chapter is organized as follows. Section 5.2 presents an overview of the TOD

vulnerability with a motivating example. Section 5.3 describes the technical elements of the proposed

approach to automatically locate and rectify this vulnerability. Section 5.4 presents a prototype

implementation of the proposed approach for Solidity smart contracts and the empirical results of

evaluating the prototype using a smart contract benchmark suite. Sections 5.5 discusses related

work. Finally, Section 5.6 concludes the work.

5.2 Background and Motivating Example

This section analyzes the TOD vulnerability and provides a particular example of how it can be ex-

ploited by an attacker. Afterwards, a general mechanism is described to identify such a vulnerability

and mitigate it.

5.2.1 The Cause of a TOD Vulnerability

A TOD vulnerability is present when a transaction is dependent on the global state of the blockchain.

While an honest transaction is pending in the mempool, an attacker injects a transaction which mod-

ifies the global state. Then, after the honest transaction is validated, it is executed in a di↵erent

environment than intended, resulting in a di↵erent outcome. If the attacker constructs their trans-

action correctly, it can result in financial gain at the expense of the honest transaction.

In detail, suppose �t denotes the global state of the blockchain after block t. Let ⌥ denote the

transition function such that �t+1 = ⌥(�t, T) where T is any transaction. Suppose TH is an honest

transaction and TA is the attacker transaction. In general, ⌥(⌥(�t, TH), TA) 6= ⌥(⌥(�t, TA), TH).

The honest transaction is expecting to execute under the state �t, but instead executes under a

state modified by the attacker, i.e. ⌥(�t, TA). If the output of TH depends on the global state of

the blockchain, then TA can maliciously change its state.

5.2.2 The Price Gouging TOD Vulnerability

Price gouging is an example of how an attacker can use the TOD vulnerability for financial gain.

Figure 5.1 gives an example of such an attack in a marketplace smart contract written in Solidity [144]

smart contract language. Clients call the function buy to purchase an amount of tokens that must

be less than the contract inventory, stored in the variable inventory. The purchased amount of

tokens is computed by dividing the value of msg.value by the value of the contract variable cost.

However, utilizing a front-running attack, the value of cost can be increased by the contract owner,

by maliciously calling the function increasePrice while an honest client transaction is pending

approval. Therefore, this will result in a loss to the client where the obtained amount of tokens will

be a↵ected by the increase cost of a single token.

CHAPTER 5. AUTOMATED AUDITING OF TOD VULNERABILITIES 41

1 contract MMarketPlace {

2 address owner;

3 uint private cost = 100;

4 uint private inventory = 30;

5

6 event Purchase(address _buyer, uint _amt);

7

8 function increasePrice(uint increaseCost) {

9 require(msg.sender == owner);

10 cost += increaseCost;

11 }

12

13 function buy() returns(uint) {

14

15 uint amt = msg.value / cost;

16 require(inventory > amt);

17 inventory -= amt;

18 emit Purchase(msg.sender, amt);

19 return amt;

20 }

21 }

1 contract MMarketPlace {

2 address owner;

3 uint private cost = 100;

4 uint private inventory = 30;

5

6 event Purchase(address _buyer, uint _amt);

7

8 function increasePrice(uint increaseCost) {

9 require(msg.sender == owner);

10 cost += increaseCost;

11 }

12

13 function buy(uint costExpected) returns(uint) {

14 require(cost == costExpected);

15 uint amt = msg.value / cost;

16 require(inventory > amt);

17 inventory -= amt;

18 emit Purchase(msg.sender, amt);

19 return amt;

20 }

21 }

Figure 5.1: Example of the Price Gouging TOD Vulnerability (left) and its Rectification (right)

5.2.3 Locating TOD Vulnerabilities

The first objective of this chapter is to locate TOD vulnerabilities in smart contracts. Since changing

the order between the client transaction and attacker transaction a↵ects the final output, this means

that the client transaction outcome is dependent on one or more state variables that the attacker

transaction modifies. Thus, to locate TOD vulnerabilities, state variables are found that a↵ect the

outcome of an honest transaction and that can be altered through setter functions that attackers

can call to manipulate the smart contract state. For instance, in the smart contract on the left

of Figure 5.1 the outcome of the transaction calling the function buy (the amount of inventory

purchased, stored in the variable amt) is a↵ected by the variable cost that can be increased by the

setter function increasePrice.

5.2.4 Rectifying TOD Vulnerabilities

One method of rectifying a TOD vulnerability is to add a guard statement to check whether the

state of a smart contract is has changed since the transaction was submitted. In particular, this will

allow clients to pass values for the states variables that can be altered. Then, in the body of the

called function, require statements are added to ensure that the current values of the state variables

correspond to the expected values passed by the clients. For instance, the right of Figure 5.1 gives

the rectified version of the smart contract on the left of the figure. Notice that in the final correct

version an additional parameter is added to the function buy, i.e. costExpected, that has the same

type as cost, i.e. uint. Then, in the body of buy, a require statement is added as a guard to

check whether the current value of cost corresponds to the passed value of costExpected. Thus,

if the global state of the blockchain was modified in such a way that a↵ected the output of the buy

function, then the smart contract will abort the transaction.

CHAPTER 5. AUTOMATED AUDITING OF TOD VULNERABILITIES 42

5.3 Analysis Approach

This section presents the proposed methodology to automatically locate and rectify TOD vulnera-

bilities in smart contracts.

5.3.1 Location Algorithm

Algorithm 1 A procedure for locating TOD vulnerabilities

1: procedure ListDependencies(F ,G)
2: Q {}
3: for each f 2 F
4: for each p 2 outputParams(f)
5: G0 = pointToAnalysis(f, p,G)
6: for each x 2 G0

7: if findSetter(x,F)
8: Q[f] x]Q[f]
9: output Q

10: end procedure

The proposed approach aims to locate the vulnerability in a smart contract and transform the

contract’s code to rectify the vulnerability without changing the functionality of the contract. Alias

and static code analysis are leveraged to compute relationships between the outcomes of public

functions that can be called by users and state variables that can be manipulated through set-

ter functions. Algorithm 1 presents the proposed procedure to locate TOD vulnerability in smart

contracts. Given the lists of public functions F and state variables G extracted from the abstract

syntax tree of a smart contract, the procedure ListDependencies computes, for each function f in

F , the set of state variables Q[f] ⇢ G that the outcome of f depends on and that can be modified

by setter functions. In particular, ListDependencies computes for each output parameter of f (i.e.

outputParams(f)) the state variables that it depends on, G0, using the procedure pointToAnalysis

that computes dependency relationships between variables in the context of a given function. For

each variable g in G0, the procedure uses findSetter to check whether there exist a public set-

ter function that modifies the value of g. The proposed algorithm leverages the precision of the

above procedures to find the optimal subset of state variables checks for each function, denoted the

dependency variables of the function.

5.3.2 Rectification Algorithm

Once the dependency variables are identified for each public function, the proposed repair mechanism

consists of inserting, for each dependency variable, an input parameter that has the same type in the

corresponding function signature. Subsequently, a require statement is inserted in the function’s

body as a guard to check whether the current value of the dependency variable corresponds to the

value passed as parameter by the client’s transaction that is calling the function. This checks that

the state of the dependency variables has not changed since the time when the client issued its

transaction.

CHAPTER 5. AUTOMATED AUDITING OF TOD VULNERABILITIES 43

5.4 Empirical Evaluation

5.4.1 Implementation and Experimental Setup

Implementation

A prototype tool is developed, implementing the algorithm described in Section 5.3 that takes as

input a Solidity smart contract. This tool utilizes the Slither [54] static analyzer framework for

Solidity to construct Control Flow Graphs and dependency relationships in a given Solidity smart

contract. Note that in this implementation, public functions refer to functions with signatures

that contain either of the Solidity keywords public and external. The open-source code for the

implementation is available on GitHub.1

Experimental Setup

The experiments are run on an Intel Core i3-4170 3.7GHz CPU, 8GB of DDR3 RAM, 256GB SSD

machine running Linux Ubuntu 20.04.3LTS operating system in a local network environment.

5.4.2 DataSet Collection

The experiments comprise of a benchmark suite of 51 Solidity smart contracts constituted of three

datasets. The first dataset is constituted of 11 contracts obtained from open-source GitHub repos-

itories. It includes the reference smart contract used in [57] to evaluate static analysis tools for

locating TOD vulnerabilities. It also includes two smart contracts extracted from Etherscan [53]

without TOD vulnerabilities to test that the implementation does not flag non-existing TOD vulner-

abilities. The second dataset is constituted of 20 contracts obtained from the benchmark contracts

used in [100]. The third dataset is constituted of 20 contracts obtained from the benchmark con-

tracts [124]. The complete dataset can be found on the Github repository with the implementation.

5.4.3 Results

The prototype tool runs with the benchmark suite of 51 Solidity smart contracts. Table 5.1 reports

the experimental results. The first three columns in Table 5.1 list some characteristics of the bench-

mark suite, i.e. the contract name, the number of lines of code (loc), and the number of functions

(nof). The last three columns in Table 5.1 list data concerning the application of the proposed tool.

The column nTOD lists the number of TOD vulnerabilities the proposed tool locates in each contract.

The column loc’ lists the number of lines in contract’s code in each rectified contract. Finally, the

column diff lists the number of lines of code that were either added to or modified in the original

contract. This shows that the code transformation to rectify the smart contracts is lightweight.

The smart contract BitCash is the reference contract that was used in [57] to test static analysis

tools in locating TOD vulnerabilities. The proposed tool is able to report the TOD vulnerability

in this contract and rectify it. The two smart contracts Sale2 and Crowdsale do not have TOD

vulnerabilities and they are used to test that the implementation does not give false negatives. The

two smart contracts Sale2-Vulnerable and Crowdsale-Vulnerable are modified versions of Sale2

and Crowdsale contracts, respectively, where a TOD vulnerability is inserted in each contract.

1https://github.com/Veneris-Group/TOD-Location-Rectification

https://github.com/Veneris-Group/TOD-Location-Rectification

CHAPTER 5. AUTOMATED AUDITING OF TOD VULNERABILITIES 44

Table 5.1: Empirical Results of TOD Rectification

Contract Name loc nof nTOD loc’ di↵

BitCash 28 2 1 29 2
Sale 71 6 1 72 2
MMarketPlace 21 2 1 22 2
Purchase 31 3 1 32 2
YFT 79 7 2 81 4
TTC 78 7 2 80 4
PrivateSale 40 5 1 43 4
Sale2 125 10 0 125 0
Crowdsale 92 7 0 92 0
Sale2-Vulnerable 129 11 1 130 2
Crowdsale-Vulnerable 96 8 1 97 2
DSTContract 1268 39 9 1278 10
GenesMarket 1262 19 6 1265 3
F3DClick 1926 35 9 1935 9
KnowTokenCrowdSale 228 5 1 229 1
GrowToken 176 14 4 180 4
TrustZen 245 6 8 249 4
GetToken 81 5 2 82 1
Slotthereum 252 21 4 254 2
MyAdvancedToken7 125 12 6 128 3
Crowdsale2 69 10 2 70 1
SaleFix 692 63 2 693 1
Token 144 13 2 145 1
HQ 209 15 4 211 2
Oasis 290 14 7 297 7
SolidStamp 360 20 4 362 2
FairyFarmer 144 22 6 150 6
LISCTrade 399 34 2 400 1
InvestToken 936 92 4 940 4
FoMo3Dshort 1927 78 9 1936 9
DACMI 461 43 7 468 7
Lottery 45 6 1 46 1
kernelFun 118 6 3 121 3
Dickael 270 22 2 274 4
TetherToken 455 11 2 458 3
LinkToken 355 5 1 356 1
TokenSale 61 4 0 61 0
HuanCasino 151 8 1 153 2
MITxSubscriptionPayment 341 2 1 342 1
MultiPadLaunchApp 525 46 3 528 3
TokenUseV2 300 18 6 312 12
Sociol 92 12 1 93 1
Stableupgradeproxy 362 23 3 365 3
GravatarRegistry 67 4 1 68 1
NeoUsd 151 15 2 153 2
GAMCasino 188 13 2 190 2
FabricCrowdSale 105 9 1 106 1
PonziCoin 86 5 3 89 3
CliqStaking 358 28 4 362 4
Betting 225 15 1 226 1
LadaCoin 49 1 1 50 1

CHAPTER 5. AUTOMATED AUDITING OF TOD VULNERABILITIES 45

5.4.4 Limitations and Discussion

In the current setup, the proposed implementation rectifies all detected vulnerabilities, however,

it might be the case that some vulnerabilities are not exploitable and repairing them may not be

necessary. For instance, this can occur in the case where public users trust a smart contract’s owner

and they are assured that the contract’s state will not be manipulated while their transactions are

pending approval.

Another limitation in the proposed implementation is that the static analysis tool Slither

does not consider inlined assembly statements within the smart contract code. Thus, the proposed

implementation might miss dependencies between a transaction’s outcome and state variables that

can be manipulated.

5.5 Related Work

5.5.1 Analysis of Smart Contracts

A number of papers have investigated the problem of automated detection of common vulnerabilities

in smart contracts. This prior research is either based on symbolic execution engines, e.g. [14, 73, 88,

118, 163], static analysis, e.g. [64, 83, 161, 164], or dynamic analysis, e.g. [66]. The past work based

on symbolic execution and dynamic analysis can only establish correctness for bounded executions

of smart contracts. On the other hand, the works based on static analysis are designed to expose

certain coding patterns that are prone to critical vulnerabilities and do not establish full functional

correctness. The most closely related work to this thesis is Securify [164] and Oyente [14], which

investigate TOD among the patterns of vulnerabilities they detect. However, it was shown recently

in [57], that those tools may produce false positives and/or false negatives, which is not the case in

the proposed algorithm.

5.5.2 Automated Repairs of Smart Contracts

There is not much work on automated repairs of bugs in smart contracts. In [117], the authors

propose an approach to automatically repair four di↵erent vulnerabilities in smart contracts, which

are intra-function reentrancy, cross-function reentrancy, arithmetic, and tx.origin vulnerabilities.

However, they do not handle the TOD vulnerabilities investigated in this thesis.

5.5.3 Functional Verification of Smart Contracts

Several previous works have developed frameworks for checking full functional correctness of smart

contracts using proof assistants such as Coq, F* [21], and Isabelle/HOL [5, 65, 75, 138]; auto-

mated theorem provers [69, 168]; or predicate abstraction [130]. These works rely on user-provided

functional specifications while the work of this thesis focuses on the specific TOD vulnerability

pattern, and makes it possible to locate and rectify this vulnerability in smart contracts for which

functional specifications do not exist. On the other hand, the proposed work cannot establish the

full functional correctness of smart contracts.

CHAPTER 5. AUTOMATED AUDITING OF TOD VULNERABILITIES 46

5.6 Conclusion

This chapter presents an automated technique for detecting and repairing TOD vulnerabilities in

smart contracts. Using static analysis, dependency relations between public functions are derived

that can be called by any user and state variables that can be manipulated by malicious users.

The proposed technique is implemented in a prototype tool using an existing static analyzer for

Solidity. The tool is used to detect and repair TOD vulnerabilities in 51 Solidity smart contracts

demonstrating that its practical application. Furthermore, the rectified smart contracts contained

only a small number of modifications compared to the length of the original smart contracts.

Chapter 6

Conclusion and Future Work

6.1 Contributions

As blockchain enabled smart contracts continues to infiltrate every aspect of industry, it is critical

that they are grounded with a proper foundation. Numerous, significant vulnerabilities have been

discovered on the Ethereum Virtual Machine, yet it remains to be the most popular smart contract

language for creating decentralized applications. Move is a new smart contract language, which has

security and verifiability as first-class features. As the adoption of Move increases, it necessitates

robust developer tools and adherence to best practice principles, similar to the existing infrastructure

present in Ethereum. This thesis has furthered the progress of this goal in three ways.

First, this thesis introduced VeriMove, the first model checking framework that supports the

Move language. VeriMove expanded the capabilities of the VeriSolid model checking tool for

Solidity, so that its correct-by-design model checking framework could be applied to the Move

language. The experimental results showed that model checking is a feasible method to formally

verify global properties in Move smart contracts.

Second, this thesis presented the first work on gas optimization in the Move language. The vast

research on gas optimization in Solidity was analyzed and applied to the Move language. This thesis

proposed 11 gas optimization patterns and principles for the Move language, presented 5 patterns

that decrease the time complexity of the smart contract but have no e↵ect on gas consumption,

and implemented a sample smart contract for each proposed gas optimization pattern. The results

showed that the proposed gas optimization patterns reduce gas consumption in a typical smart

contract by 7� 56%.

Third, this thesis investigated the transaction order dependency vulnerabilities in smart con-

tracts. A static analysis based approach utilizing point-to analysis and guard statements was pro-

posed to automatically locate and rectify such transaction order dependency vulnerabilities. The

proposed algorithm was implemented as a prototype tool in Solidity, utilizing the Slither static

analyzer. The empirical results on a benchmark suite containing 51 Solidity smart contracts showed

that the proposed methodology can be used to detect and rectify such vulnerabilities, or to certify

their absence.

47

CHAPTER 6. CONCLUSION AND FUTURE WORK 48

6.2 Future Work

Blockchains such as Aptos, Sui, OpenLibra, and StarCoin which have Move as their smart contract

language have yet to achieve the widespread adoption of Ethereum. Thus, at the time of writing,

there lacks a su�cient amount of diversity in the deployed smart contracts to create standardized

benchmarking suites. As a result, much of the testing in this thesis is limited. In Chapter 3,

the proposed framework VeriMove was tested against three popular contracts transcribed from

Solidity into Move. Likewise in Chapter 4, the tested smart contracts were designed specifically

for the particular gas optimizations in question. While the results validate the correctness of the

work, they do not provide insight into performance on deployed smart contracts and real-world

applications. Furthermore, in Chapter 5, the proposed algorithm was implemented and tested on

Solidity smart contracts rather than Move. Again, this is due to the lack of testing available to the

Move language. With wider Move adoption anticipated, comprehensive testing of these Move tools

is recommended for future research.

Bibliography

[1] 0L Network, https://0l.network/, Accessed on 04/13/2022., 2022.

[2] E. Albert, J. Correas, P. Gordillo, G. Román-Dı́ez, and A. Rubio, Gasol: Gas analysis and

optimization for ethereum smart contracts, 2019. arXiv: 1912.11929 [cs.PL].

[3] E. Albert, P. Gordillo, A. Rubio, and M. A. Schett, “Synthesis of super-optimized smart

contracts using max-smt,” in Computer Aided Verification, S. K. Lahiri and C. Wang, Eds.,

cham: Springer International Publishing, 2020, pp. 177–200, isbn: 978-3-030-53288-8.

[4] F. E. Allen, “Control flow analysis,” in Proceedings of a Symposium on Compiler Optimiza-

tion, Urbana-Champaign, Illinois: Association for Computing Machinery, 1970, pp. 1–19,

isbn: 9781450373869. doi: 10.1145/800028.808479. [Online]. Available: https://doi.org/

10.1145/800028.808479.

[5] S. Amani, M. Bégel, M. Bortin, and M. Staples, “Towards verifying ethereum smart contract

bytecode in isabelle/hol,” in Proceedings of the 7th ACM SIGPLAN International Conference

on Certified Programs and Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9, 2018,

J. Andronick and A. P. Felty, Eds., ACM, 2018, pp. 66–77. doi: 10.1145/3167084. [Online].

Available: https://doi.org/10.1145/3167084.

[6] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie, “Zing: A model checker for

concurrent software,” in Computer Aided Verification, R. Alur and D. A. Peled, Eds., Berlin,

Heidelberg: Springer Berlin Heidelberg, 2004, pp. 484–487, isbn: 978-3-540-27813-9.

[7] E. Androulaki et al., “Hyperledger fabric,” in Proceedings of the Thirteenth EuroSys Con-

ference, ACM, Apr. 2018. doi: 10.1145/3190508.3190538. [Online]. Available: https:

//doi.org/10.1145%2F3190508.3190538.

[8] F. A. Aponte-Novoa, A. L. S. Orozco, R. Villanueva-Polanco, and P. Wightman, “The 51%

attack on blockchains: A mining behavior study,” IEEE Access, vol. 9, pp. 140 549–140 564,

2021. doi: 10.1109/ACCESS.2021.3119291.

[9] Aptos labs, GitHub repository, 2023. [Online]. Available: https://github.com/aptos-

labs/aptos- core/blob/cdb1f27868890a49075356d626e91d73f8ee3170/aptos- move/

aptos-gas-meter/src/meter.rs.

[10] Aptos Labs, https://aptoslabs.com/, Accessed on 04/13/2022., 2022.

[11] Aptos Labs, Gas and storage fees, https://aptos.dev/concepts/gas-txn-fee/, Accessed

on 07/26/2023., 2023.

49

https://0l.network/
https://arxiv.org/abs/1912.11929
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/3167084
https://doi.org/10.1145/3167084
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145%2F3190508.3190538
https://doi.org/10.1145%2F3190508.3190538
https://doi.org/10.1109/ACCESS.2021.3119291
https://github.com/aptos-labs/aptos-core/blob/cdb1f27868890a49075356d626e91d73f8ee3170/aptos-move/aptos-gas-meter/src/meter.rs
https://github.com/aptos-labs/aptos-core/blob/cdb1f27868890a49075356d626e91d73f8ee3170/aptos-move/aptos-gas-meter/src/meter.rs
https://github.com/aptos-labs/aptos-core/blob/cdb1f27868890a49075356d626e91d73f8ee3170/aptos-move/aptos-gas-meter/src/meter.rs
https://aptoslabs.com/
https://aptos.dev/concepts/gas-txn-fee/

BIBLIOGRAPHY 50

[12] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum smart contracts

(sok),” in Principles of Security and Trust - 6th International Conference, POST 2017, Held

as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017,

Uppsala, Sweden, April 22-29, 2017, Proceedings, M. Ma↵ei and M. Ryan, Eds., ser. Lecture

Notes in Computer Science, vol. 10204, Springer, 2017, pp. 164–186. doi: 10.1007/978-3-

662-54455-6_8. [Online]. Available: https://doi.org/10.1007/978-3-662-54455-

6%5C_8.

[13] A. Back, “Hashcash - a denial of service counter-measure,” 2002.

[14] S. Badruddoja, R. Dantu, Y. He, K. Upadhayay, and M. Thompson, “Making smart contracts

smarter,” in 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC),

2021, pp. 1–3. doi: 10.1109/ICBC51069.2021.9461148.

[15] C. Baier and J.-P. Katoen, Principles of Model Checking (Representation and Mind Series).

The MIT Press, 2008.

[16] C. Baier and J.-P. Katoen. “Introduction to model checking - lecture # 1: Motivation,

background, and course organization.” Lecture slides. (2018), [Online]. Available: https:

//pages.di.unipi.it/gadducci/SVV-22/slideA/svv_01.pdf.

[17] A. Basu et al., “Rigorous component-based system design using the bip framework,” IEEE

Software, vol. 28, no. 3, pp. 41–48, 2011. doi: 10.1109/MS.2011.27.

[18] D. Bayer, S. Haber, and W. S. Stornetta, “Improving the e�ciency and reliability of digital

time-stamping,” in Sequences II, R. Capocelli, A. De Santis, and U. Vaccaro, Eds., New York,

NY: Springer New York, 1993, pp. 329–334, isbn: 978-1-4613-9323-8.

[19] Beauty chain: Bectoken, Accessed 08/02/2023. [Online]. Available: https://etherscan.io/

address/0xc5d105e63711398af9bbff092d4b6769c82f793d%5C#code.

[20] Y. Bertot and P. Castéran, Interactive theorem proving and program development: Coq’Art:

the calculus of inductive constructions. Springer Science & Business Media, 2013.

[21] K. Bhargavan et al., “Formal verification of smart contracts: Short paper,” in Proceedings of

the 2016 ACM Workshop on Programming Languages and Analysis for Security, T. C. Murray

and D. Stefan, Eds., ser. PLAS ’16, Vienna, Austria: Association for Computing Machinery,

2016, pp. 91–96, isbn: 9781450345743. doi: 10.1145/2993600.2993611. [Online]. Available:

https://doi.org/10.1145/2993600.2993611.

[22] Binance, What is a smart contract security audit? https://academy.binance.com/en/

articles/what-is-a-smart-contract-security-audit, Accessed on 3/16/2022.

[23] S. Blackshear et al., “Move: A language with programmable resources,” Libra Assoc., 2019.

[24] “Blockchain: A fundamental shift for financial service institutions,” Capgemini, Tech. Rep.,

2017.

[25] M. Bowman, D. Das, A. Mandal, and H. Montgomery, “On elapsed time consensus protocols,”

in Progress in Cryptology – INDOCRYPT 2021, A. Adhikari, R. Küsters, and B. Preneel, Eds.,

Cham: Springer International Publishing, 2021, pp. 559–583, isbn: 978-3-030-92518-5.

https://doi.org/10.1007/978-3-662-54455-6%5C_8
https://doi.org/10.1007/978-3-662-54455-6%5C_8
https://doi.org/10.1109/ICBC51069.2021.9461148
https://pages.di.unipi.it/gadducci/SVV-22/slideA/svv_01.pdf
https://pages.di.unipi.it/gadducci/SVV-22/slideA/svv_01.pdf
https://doi.org/10.1109/MS.2011.27
https://etherscan.io/address/0xc5d105e63711398af9bbff092d4b6769c82f793d%5C#code
https://etherscan.io/address/0xc5d105e63711398af9bbff092d4b6769c82f793d%5C#code
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1145/2993600.2993611
https://academy.binance.com/en/articles/what-is-a-smart-contract-security-audit
https://academy.binance.com/en/articles/what-is-a-smart-contract-security-audit

BIBLIOGRAPHY 51

[26] T. Brandstätter, S. Schulte, J. Cito, and M. Borkowski, “Characterizing e�ciency optimiza-

tions in solidity smart contracts,” in 2020 IEEE International Conference on Blockchain

(Blockchain), 2020, pp. 281–290. doi: 10.1109/Blockchain50366.2020.00042.

[27] V. Buterin et al., “A next-generation smart contract and decentralized application platform,”

white paper, vol. 3, no. 37, pp. 2–1, 2014.

[28] V. Buterin, Hard fork completed, https://blog.ethereum.org/2016/07/20/hard-fork-

completed, Jul. 2016.

[29] V. Buterin et al., Combining ghost and casper, 2020. arXiv: 2003.03052 [cs.CR].

[30] J. Carlton and D. Crocker, “Escher verification studio perfect developer and escher c verifier,”

Industrial Use of Formal Methods: Formal Verification, pp. 155–193, 2012.

[31] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Proceedings of the Third

Symposium on Operating Systems Design and Implementation, ser. OSDI ’99, New Orleans,

Louisiana, USA: USENIX Association, 1999, pp. 173–186, isbn: 1880446391.

[32] R. Cavada et al., “The nuxmv symbolic model checker,” in Computer Aided Verification, A.

Biere and R. Bloem, Eds., Cham: Springer International Publishing, 2014, pp. 334–342, isbn:

978-3-319-08867-9.

[33] D. Chaum, “Blind signatures for untraceable payments,” in Advances in Cryptology, D.

Chaum, R. L. Rivest, and A. T. Sherman, Eds., Boston, MA: Springer US, 1983, pp. 199–203,

isbn: 978-1-4757-0602-4.

[34] H. Chen, M. Pendleton, L. Njilla, and S. Xu, A survey on ethereum systems security: Vulner-

abilities, attacks and defenses, 2019. doi: 10.48550/ARXIV.1908.04507. [Online]. Available:

https://arxiv.org/abs/1908.04507.

[35] J. Chen and E. Estevez, Liberty reserve, https://www.investopedia.com/terms/l/

liberty-reserve.asp, 2020.

[36] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart contracts devour your

money,” in 2017 IEEE 24th International Conference on Software Analysis, Evolution and

Reengineering, 2017, pp. 442–446. doi: 10.1109/SANER.2017.7884650.

[37] T. Chen et al., “Towards saving money in using smart contracts,” in 2018 IEEE/ACM 40th

International Conference on Software Engineering: New Ideas and Emerging Technologies

Results (ICSE-NIER), 2018, pp. 81–84.

[38] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv: A new symbolic model

checker,” International Journal on Software Tools for Technology Transfer, vol. 2, no. 4,

pp. 410–425, 2000. doi: 10.1007/s100090050046. [Online]. Available: https://doi.org/

10.1007/s100090050046.

[39] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchronization skeletons using

branching time temporal logic,” in Workshop on logic of programs, Springer, 1981, pp. 52–71.

[40] B. Cook, D. Kroening, and N. Sharygina, “Symbolic model checking for asynchronous boolean

programs,” inModel Checking Software, P. Godefroid, Ed., Berlin, Heidelberg: Springer Berlin

Heidelberg, 2005, pp. 75–90, isbn: 978-3-540-31899-6.

https://doi.org/10.1109/Blockchain50366.2020.00042
https://blog.ethereum.org/2016/07/20/hard-fork-completed
https://blog.ethereum.org/2016/07/20/hard-fork-completed
https://arxiv.org/abs/2003.03052
https://doi.org/10.48550/ARXIV.1908.04507
https://arxiv.org/abs/1908.04507
https://www.investopedia.com/terms/l/liberty-reserve.asp
https://www.investopedia.com/terms/l/liberty-reserve.asp
https://doi.org/10.1109/SANER.2017.7884650
https://doi.org/10.1007/s100090050046
https://doi.org/10.1007/s100090050046
https://doi.org/10.1007/s100090050046

BIBLIOGRAPHY 52

[41] S. A. Cook, “Soundness and completeness of an axiom system for program verification,” SIAM

Journal on Computing, vol. 7, no. 1, pp. 70–90, 1978. doi: 10.1137/0207005. eprint: https:

//doi.org/10.1137/0207005. [Online]. Available: https://doi.org/10.1137/0207005.

[42] Coq, https://coq.inria.fr/documentation, Accessed 07/10/2023.

[43] N. T. Courtois, On the longest chain rule and programmed self-destruction of crypto curren-

cies, 2014. arXiv: 1405.0534 [cs.CR].

[44] E. Cubides and S. O’Brien, “2022 findings from the diary of consumer payment choice,” The

Federal Reserve, Tech. Rep., 2022.

[45] E. Cubides and S. O’Brien, “2023 findings from the diary of consumer payment choice,” The

Federal Reserve, Tech. Rep., 2023.

[46] W. Dai, B-money, http://www.weidai.com/bmoney.txt, 1998.

[47] E. Davis and G. Marcus, “The scope and limits of simulation in automated reasoning,”

Artificial Intelligence, vol. 233, pp. 60–72, 2016, issn: 0004-3702. doi: https://doi.org/

10.1016/j.artint.2015.12.003. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0004370215001794.

[48] C. Dwork and M. Naor, “Pricing via processing or combatting junk mail,” in Advances in

Cryptology — CRYPTO’ 92, E. F. Brickell, Ed., Berlin, Heidelberg: Springer Berlin Heidel-

berg, 1993, pp. 139–147, isbn: 978-3-540-48071-6.

[49] E-gold, https : / / cs . stanford . edu / people / eroberts / cs201 / projects / 2010 - 11 /

Bitcoins/e-gold.html, 2010.

[50] Ethereum, Gas and fees, https://ethereum.org/en/developers/docs/gas/, Accessed on

07/26/2023., 2023.

[51] Ethereum Improvement Proposals, EIP-20: Token Standard, https://eips.ethereum.org/

EIPS/eip-20, Accessed on 06/21/2022., 2022.

[52] Ethereum Improvement Proposals, EIP-721: Non-Fungible Token Standard, https://eips.

ethereum.org/EIPS/eip-721, Accessed on 06/21/2022., 2022.

[53] Etherscan, 2021. [Online]. Available: https://etherscan.io/.

[54] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework for smart contracts,” in

2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering

for Blockchain (WETSEB), IEEE, 2019, pp. 8–15.

[55] R. W. Floyd, “Assigning meanings to programs,” Proceedings of Symposium on Applied Math-

ematics, vol. 19, pp. 19–32, 1967. [Online]. Available: http : / / laser . cs . umass . edu /

courses/cs521-621.Spr06/papers/Floyd.pdf.

[56] I. Garfatta, K. Klai, W. Gaaloul, and M. Graiet, “A survey on formal verification for solidity

smart contracts,” in 2021 Australasian Computer Science Week Multiconference, ser. ACSW

’21, Dunedin, New Zealand: Association for Computing Machinery, 2021, isbn: 9781450389563.

doi: 10.1145/3437378.3437879. [Online]. Available: https://doi.org/10.1145/3437378.

3437879.

https://doi.org/10.1137/0207005
https://doi.org/10.1137/0207005
https://doi.org/10.1137/0207005
https://doi.org/10.1137/0207005
https://coq.inria.fr/documentation
https://arxiv.org/abs/1405.0534
http://www.weidai.com/bmoney.txt
https://doi.org/https://doi.org/10.1016/j.artint.2015.12.003
https://doi.org/https://doi.org/10.1016/j.artint.2015.12.003
https://www.sciencedirect.com/science/article/pii/S0004370215001794
https://www.sciencedirect.com/science/article/pii/S0004370215001794
https://cs.stanford.edu/people/eroberts/cs201/projects/2010-11/Bitcoins/e-gold.html
https://cs.stanford.edu/people/eroberts/cs201/projects/2010-11/Bitcoins/e-gold.html
https://ethereum.org/en/developers/docs/gas/
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721
https://etherscan.io/
http://laser.cs.umass.edu/courses/cs521-621.Spr06/papers/Floyd.pdf
http://laser.cs.umass.edu/courses/cs521-621.Spr06/papers/Floyd.pdf
https://doi.org/10.1145/3437378.3437879
https://doi.org/10.1145/3437378.3437879
https://doi.org/10.1145/3437378.3437879

BIBLIOGRAPHY 53

[57] A. Ghaleb and K. Pattabiraman, “How e↵ective are smart contract analysis tools? evaluating

smart contract static analysis tools using bug injection,” in ISSTA ’20: 29th ACM SIGSOFT

International Symposium on Software Testing and Analysis, Virtual Event, USA, July 18-

22, 2020, S. Khurshid and C. S. Pasareanu, Eds., ACM, 2020, pp. 415–427. doi: 10.1145/

3395363.3397385. [Online]. Available: https://doi.org/10.1145/3395363.3397385.

[58] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand: Scaling byzan-

tine agreements for cryptocurrencies,” in Proceedings of the 26th Symposium on Operating

Systems Principles, ser. SOSP ’17, Shanghai, China: Association for Computing Machinery,

2017, pp. 51–68, isbn: 9781450350853. doi: 10.1145/3132747.3132757. [Online]. Available:

https://doi.org/10.1145/3132747.3132757.

[59] P. Glazman,Qq coin — tencent’s early virtual currency, https://medium.com/@cryptomango/

qq-coin-tencents-early-virtual-currency-fdff1090d910, 2018.

[60] P. Godefroid, “Model checking for programming languages using verisoft,” in Proceedings

of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

ser. POPL ’97, Paris, France: Association for Computing Machinery, 1997, pp. 174–186, isbn:

0897918533. doi: 10.1145/263699.263717. [Online]. Available: https://doi.org/10.1145/

263699.263717.

[61] G. Golan Gueta et al., “Sbft: A scalable and decentralized trust infrastructure,” in 2019 49th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),

2019, pp. 568–580. doi: 10.1109/DSN.2019.00063.

[62] M. J. Gordon and T. F. Melham, Introduction to HOL: A theorem proving environment for

higher order logic. Cambridge University Press, 1993.

[63] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smaragdakis, “Madmax: Surviv-

ing out-of-gas conditions in ethereum smart contracts,” Proc. ACM Program. Lang., vol. 2,

no. OOPSLA, Oct. 2018. doi: 10.1145/3276486. [Online]. Available: https://doi.org/10.

1145/3276486.

[64] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smaragdakis, “Madmax: Surviv-

ing out-of-gas conditions in ethereum smart contracts,” Proc. ACM Program. Lang., vol. 2,

no. OOPSLA, 116:1–116:27, 2018. doi: 10.1145/3276486. [Online]. Available: https://

doi.org/10.1145/3276486.

[65] I. Grishchenko, M. Ma↵ei, and C. Schneidewind, “A semantic framework for the security

analysis of ethereum smart contracts,” in Principles of Security and Trust - 7th International

Conference, POST 2018, Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, L.

Bauer and R. Küsters, Eds., ser. Lecture Notes in Computer Science, vol. 10804, Springer,

2018, pp. 243–269. doi: 10.1007/978-3-319-89722-6_10. [Online]. Available: https:

//doi.org/10.1007/978-3-319-89722-6%5C_10.

[66] S. Grossman et al., “Online detection of e↵ectively callback free objects with applications

to smart contracts,” Proc. ACM Program. Lang., vol. 2, no. POPL, 48:1–48:28, 2018. doi:

10.1145/3158136. [Online]. Available: https://doi.org/10.1145/3158136.

https://doi.org/10.1145/3395363.3397385
https://doi.org/10.1145/3395363.3397385
https://doi.org/10.1145/3395363.3397385
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/3132747.3132757
https://medium.com/@cryptomango/qq-coin-tencents-early-virtual-currency-fdff1090d910
https://medium.com/@cryptomango/qq-coin-tencents-early-virtual-currency-fdff1090d910
https://doi.org/10.1145/263699.263717
https://doi.org/10.1145/263699.263717
https://doi.org/10.1145/263699.263717
https://doi.org/10.1109/DSN.2019.00063
https://doi.org/10.1145/3276486
https://doi.org/10.1145/3276486
https://doi.org/10.1145/3276486
https://doi.org/10.1145/3276486
https://doi.org/10.1145/3276486
https://doi.org/10.1145/3276486
https://doi.org/10.1007/978-3-319-89722-6%5C_10
https://doi.org/10.1007/978-3-319-89722-6%5C_10
https://doi.org/10.1145/3158136
https://doi.org/10.1145/3158136

BIBLIOGRAPHY 54

[67] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas, “The seahorn verification frame-

work,” in Computer Aided Verification, D. Kroening and C. S. Păsăreanu, Eds., Springer,

2015, pp. 343–361, isbn: 978-3-319-21690-4.

[68] S. Haber and W. S. Stornetta, “How to time-stamp a digital document,” Journal of Cryptol-

ogy, vol. 3, no. 2, pp. 99–111, 1991. doi: 10.1007/BF00196791. [Online]. Available: https:

//doi.org/10.1007/BF00196791.

[69] Á. Hajdu and D. Jovanovic, “Solc-verify: A modular verifier for solidity smart contracts,” in

Verified Software. Theories, Tools, and Experiments - 11th International Conference, VSTTE

2019, New York City, NY, USA, July 13-14, 2019, Revised Selected Papers, S. Chakraborty

and J. A. Navas, Eds., ser. Lecture Notes in Computer Science, vol. 12031, Springer, 2019,

pp. 161–179. doi: 10.1007/978-3-030-41600-3_11. [Online]. Available: https://doi.

org/10.1007/978-3-030-41600-3%5C_11.

[70] D. Harz and W. Knottenbelt, Towards safer smart contracts: A survey of languages and

verification methods, Sep. 2018.

[71] K. Havelund and T. Pressburger, “Model checking java programs using java pathfinder,”

International Journal on Software Tools for Technology Transfer, vol. 2, pp. 366–381, 2000.

[72] R. Hayashi, What are the average credit card processing fees that merchants pay? https:

//paymentdepot.com/blog/average-credit-card-processing-fees/, Apr. 2022.

[73] J. He, M. Balunovic, N. Ambroladze, P. Tsankov, and M. T. Vechev, “Learning to fuzz from

symbolic execution with application to smart contracts,” in Proceedings of the 2019 ACM

SIGSAC Conference on Computer and Communications Security, CCS 2019, London, UK,

November 11-15, 2019, L. Cavallaro, J. Kinder, X. Wang, and J. Katz, Eds., ACM, 2019,

pp. 531–548. doi: 10.1145/3319535.3363230. [Online]. Available: https://doi.org/10.

1145/3319535.3363230.

[74] E. Hildenbrandt et al., “Kevm: A complete formal semantics of the ethereum virtual ma-

chine,” in 2018 IEEE 31st Computer Security Foundations Symposium, pp. 204–217. doi:

10.1109/CSF.2018.00022.

[75] Y. Hirai, “Defining the ethereum virtual machine for interactive theorem provers,” in Finan-

cial Cryptography and Data Security - FC 2017 International Workshops, WAHC, BITCOIN,

VOTING, WTSC, and TA, Sliema, Malta, April 7, 2017, Revised Selected Papers, M. Bren-

ner et al., Eds., ser. Lecture Notes in Computer Science, vol. 10323, Springer, 2017, pp. 520–

535. doi: 10.1007/978-3-319-70278-0_33. [Online]. Available: https://doi.org/10.

1007/978-3-319-70278-0%5C_33.

[76] C. A. R. Hoare, “An axiomatic basis for computer programming,” Commun. ACM, vol. 12,

no. 10, pp. 576–580, Oct. 1969, issn: 0001-0782. doi: 10.1145/363235.363259. [Online].

Available: https://doi.org/10.1145/363235.363259.

[77] G. Holzmann, “The model checker spin,” IEEE Transactions on Software Engineering, vol. 23,

no. 5, pp. 279–295, 1997. doi: 10.1109/32.588521.

https://doi.org/10.1007/BF00196791
https://doi.org/10.1007/BF00196791
https://doi.org/10.1007/BF00196791
https://doi.org/10.1007/978-3-030-41600-3%5C_11
https://doi.org/10.1007/978-3-030-41600-3%5C_11
https://paymentdepot.com/blog/average-credit-card-processing-fees/
https://paymentdepot.com/blog/average-credit-card-processing-fees/
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1007/978-3-319-70278-0%5C_33
https://doi.org/10.1007/978-3-319-70278-0%5C_33
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1109/32.588521

BIBLIOGRAPHY 55

[78] G. J. Holzmann, “Software model checking with spin,” in ser. Advances in Computers,

vol. 65, Elsevier, 2005, pp. 77–108. doi: https://doi.org/10.1016/S0065- 2458(05)

65002-4. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0065245805650024.

[79] A. Hu, Deprecate the storage gas curves, GitHub commit, 2023. [Online]. Available: https://

github.com/aptos-labs/aptos-core/commit/38f60b316a74042f0b2e17c1e518ddd337f14d20.

[80] “Ieee standard for property specification language (psl),” IEEE Std 1850-2005, pp. 1–143,

2005. doi: 10.1109/IEEESTD.2005.97780.

[81] A. Imeri, N. Agoulmine, and D. Khadraoui, “Smart contract modeling and verification tech-

niques: A survey,” in 8th International Workshop on ADVANCEs in ICT Infrastructures and

Services (ADVANCE 2020), 2020, pp. 1–8.

[82] Kaden. “Smart Contract Vulnerabilities.” (2023), [Online]. Available: https://github.com/

kadenzipfel/smart-contract-vulnerabilities (visited on 06/03/2023).

[83] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: analyzing safety of smart contracts,”

in 25th Annual Network and Distributed System Security Symposium, NDSS 2018, San Diego,

California, USA, February 18-21, 2018, The Internet Society, 2018. [Online]. Available: http:

//wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018%

5C_09-1%5C_Kalra%5C_paper.pdf.

[84] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety of smart contracts.,”

in Ndss, 2018, pp. 1–12.

[85] M. Kaufmann, P. Manolios, and J. S. Moore, Computer-aided reasoning: ACL2 case studies.

Springer Science & Business Media, 2013, vol. 4.

[86] S. Khurshid, C. S. Păsăreanu, and W. Visser, “Test input generation with java pathfinder:

Then and now (invited talk abstract),” in Proceedings of the 27th ACM SIGSOFT Interna-

tional Symposium on Software Testing and Analysis, ser. ISSTA 2018, Amsterdam, Nether-

lands: Association for Computing Machinery, 2018, pp. 1–2, isbn: 9781450356992. doi: 10.

1145/3213846.3234687. [Online]. Available: https://doi.org/10.1145/3213846.3234687.

[87] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof-of-stake,” 2012.

[88] J. Krupp and C. Rossow, “Teether: Gnawing at ethereum to automatically exploit smart

contracts,” in 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,

USA, August 15-17, 2018, W. Enck and A. P. Felt, Eds., USENIX Association, 2018, pp. 1317–

1333. [Online]. Available: https://www.usenix.org/conference/usenixsecurity18/

presentation/krupp.

[89] S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee, “Ethereum smart contract

analysis tools: A systematic review,” IEEE Access, vol. 10, pp. 57 037–57 062, 2022. doi:

10.1109/ACCESS.2022.3169902.

[90] J. Kuszmaul, “Verkle trees,” Verkle Trees, vol. 1, p. 1, 2019.

[91] A. Labs, GitHub repository, 2023. [Online]. Available: https://github.com/aptos-labs/

aptos-core/blob/3791dc07ec457496c96e5069c494d46c1ff49b41/aptos-move/aptos-

gas-schedule/src/gas_schedule/instr.rs.

https://doi.org/https://doi.org/10.1016/S0065-2458(05)65002-4
https://doi.org/https://doi.org/10.1016/S0065-2458(05)65002-4
https://www.sciencedirect.com/science/article/pii/S0065245805650024
https://www.sciencedirect.com/science/article/pii/S0065245805650024
https://github.com/aptos-labs/aptos-core/commit/38f60b316a74042f0b2e17c1e518ddd337f14d20
https://github.com/aptos-labs/aptos-core/commit/38f60b316a74042f0b2e17c1e518ddd337f14d20
https://doi.org/10.1109/IEEESTD.2005.97780
https://github.com/kadenzipfel/smart-contract-vulnerabilities
https://github.com/kadenzipfel/smart-contract-vulnerabilities
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018%5C_09-1%5C_Kalra%5C_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018%5C_09-1%5C_Kalra%5C_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018%5C_09-1%5C_Kalra%5C_paper.pdf
https://doi.org/10.1145/3213846.3234687
https://doi.org/10.1145/3213846.3234687
https://doi.org/10.1145/3213846.3234687
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://doi.org/10.1109/ACCESS.2022.3169902
https://github.com/aptos-labs/aptos-core/blob/3791dc07ec457496c96e5069c494d46c1ff49b41/aptos-move/aptos-gas-schedule/src/gas_schedule/instr.rs
https://github.com/aptos-labs/aptos-core/blob/3791dc07ec457496c96e5069c494d46c1ff49b41/aptos-move/aptos-gas-schedule/src/gas_schedule/instr.rs
https://github.com/aptos-labs/aptos-core/blob/3791dc07ec457496c96e5069c494d46c1ff49b41/aptos-move/aptos-gas-schedule/src/gas_schedule/instr.rs

BIBLIOGRAPHY 56

[92] A. Labs, Computing transaction gas, GitHub repository, 2023. [Online]. Available: https://

github.com/aptos-labs/aptos-core/blob/3791dc07ec457496c96e5069c494d46c1ff49b41/

developer-docs-site/docs/concepts/base-gas.md.

[93] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM Trans.

Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, Jul. 1982, issn: 0164-0925. doi: 10.1145/

357172.357176. [Online]. Available: https://doi.org/10.1145/357172.357176.

[94] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program analysis &

transformation,” in International Symposium on Code Generation and Optimization, 2004.

CGO 2004., 2004, pp. 75–86. doi: 10.1109/CGO.2004.1281665.

[95] Y. Lewenberg, Y. Bachrach, Y. Sompolinsky, A. Zohar, and J. S. Rosenschein, “Bitcoin mining

pools: A cooperative game theoretic analysis,” in Proceedings of the 2015 International Con-

ference on Autonomous Agents and Multiagent Systems, ser. AAMAS ’15, Istanbul, Turkey:

International Foundation for Autonomous Agents and Multiagent Systems, 2015, pp. 919–

927, isbn: 9781450334136.

[96] C. Li, F. Long, and G. Yang, Ghast: Breaking confirmation delay barrier in nakamoto con-

sensus via adaptive weighted blocks, 2020. arXiv: 2006.01072 [cs.CR].

[97] C. Li et al., “A decentralized blockchain with high throughput and fast confirmation,” in

2020 USENIX Annual Technical Conference (USENIX ATC 20), USENIX Association, Jul.

2020, pp. 515–528, isbn: 978-1-939133-14-4. [Online]. Available: https://www.usenix.org/

conference/atc20/presentation/li-chenxing.

[98] F. Ma et al., V-gas: Generating high gas consumption inputs to avoid out-of-gas vulnerability,

2021. arXiv: 1910.02945 [cs.CR].

[99] L. Marchesi, M. Marchesi, G. Destefanis, G. Barabino, and D. Tigano, “Design patterns

for gas optimization in ethereum,” in 2020 IEEE International Workshop on Blockchain

Oriented Software Engineering (IWBOSE), 2020, pp. 9–15. doi: 10.1109/IWBOSE50093.

2020.9050163.

[100] B. Mariano, Y. Chen, Y. Feng, S. K. Lahiri, and I. Dillig, “Demystifying loops in smart

contracts,” in 35th IEEE/ACM International Conference on Automated Software Engineer-

ing, ASE 2020, Melbourne, Australia, September 21-25, 2020, IEEE, 2020, pp. 262–274. doi:

10.1145/3324884.3416626. [Online]. Available: https://doi.org/10.1145/3324884.

3416626.

[101] M. Maróti et al., “Next generation (meta)modeling: Web- and cloud-based collaborative tool

infrastructure,” in MPM@MoDELS, 2014.

[102] A. Mavridou and A. Laszka, Designing secure ethereum smart contracts: A finite state ma-

chine based approach, 2017. doi: 10.48550/ARXIV.1711.09327. [Online]. Available: https:

//arxiv.org/abs/1711.09327.

[103] A. Mavridou and A. Laszka, Tool demonstration: Fsolidm for designing secure ethereum

smart contracts, 2018. doi: 10 . 48550 / ARXIV . 1802 . 09949. [Online]. Available: https :

//arxiv.org/abs/1802.09949.

https://github.com/aptos-labs/aptos-core/blob/3791dc07ec457496c96e5069c494d46c1ff49b41/developer-docs-site/docs/concepts/base-gas.md
https://github.com/aptos-labs/aptos-core/blob/3791dc07ec457496c96e5069c494d46c1ff49b41/developer-docs-site/docs/concepts/base-gas.md
https://github.com/aptos-labs/aptos-core/blob/3791dc07ec457496c96e5069c494d46c1ff49b41/developer-docs-site/docs/concepts/base-gas.md
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1109/CGO.2004.1281665
https://arxiv.org/abs/2006.01072
https://www.usenix.org/conference/atc20/presentation/li-chenxing
https://www.usenix.org/conference/atc20/presentation/li-chenxing
https://arxiv.org/abs/1910.02945
https://doi.org/10.1109/IWBOSE50093.2020.9050163
https://doi.org/10.1109/IWBOSE50093.2020.9050163
https://doi.org/10.1145/3324884.3416626
https://doi.org/10.1145/3324884.3416626
https://doi.org/10.1145/3324884.3416626
https://doi.org/10.48550/ARXIV.1711.09327
https://arxiv.org/abs/1711.09327
https://arxiv.org/abs/1711.09327
https://doi.org/10.48550/ARXIV.1802.09949
https://arxiv.org/abs/1802.09949
https://arxiv.org/abs/1802.09949

BIBLIOGRAPHY 57

[104] A. Mavridou, A. Laszka, E. Stachtiari, and A. Dubey, “VeriSolid: Correct-by-design smart

contracts for Ethereum,” in Proceedings of the 23rd International Conference on Financial

Cryptography and Data Security (FC), Feb. 2019.

[105] K. L. McMillan, Symbolic Model Checking. Kluwer Academic Publishers, Norwell, 1993.

[106] R. C. Merkle, “A digital signature based on a conventional encryption function,” in Advances

in Cryptology — CRYPTO ’87, C. Pomerance, Ed., Berlin, Heidelberg: Springer Berlin Hei-

delberg, 1988, pp. 369–378, isbn: 978-3-540-48184-3.

[107] Merkle patricia trie, https://ethereum.org/en/developers/docs/data-structures-

and-encoding/patricia-merkle-trie/, Accessed: July 21, 2023, Jul. 2023.

[108] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger of bft protocols,”

in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications

Security, ser. CCS ’16, Vienna, Austria: Association for Computing Machinery, 2016, pp. 31–

42, isbn: 9781450341394. doi: 10 . 1145 / 2976749 . 2978399. [Online]. Available: https :

//doi.org/10.1145/2976749.2978399.

[109] ModulTrade, New erc20 batchoverflow bug, https://blog.goodaudience.com/new-erc20-

batchoverflow-bug-2cd191668f0d, Apr. 2018.

[110] S. Motepalli and H.-A. Jacobsen, “Reward mechanism for blockchains using evolutionary

game theory,” in 2021 3rd Conference on Blockchain Research & Applications for Innovative

Networks and Services (BRAINS), 2021, pp. 217–224. doi: 10.1109/BRAINS52497.2021.

9569791.

[111] L. de Moura and N. Bjørner, “Z3: An e�cient smt solver,” in Tools and Algorithms for

the Construction and Analysis of Systems, C. R. Ramakrishnan and J. Rehof, Eds., Berlin,

Heidelberg: Springer Berlin Heidelberg, 2008, pp. 337–340, isbn: 978-3-540-78800-3.

[112] C. A. Munoz and R. A. Demasi, “Advanced theorem proving techniques in pvs and applica-

tions,” Tools for Practical Software Verification: LASER, International Summer School 2011,

Elba Island, Italy, Revised Tutorial Lectures, pp. 96–132, 2012.

[113] J. Nagele and M. A. Schett, Blockchain superoptimizer, 2020. arXiv: 2005.05912 [cs.LO].

[114] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” May 2009. [Online]. Available:

http://www.bitcoin.org/bitcoin.pdf.

[115] K. Nelaturu, S. M. Beillahi, F. Long, and A. Veneris, “Smart contracts refinement for gas

optimization,” in 2021 3rd Conference on Blockchain Research & Applications for Innovative

Networks and Services (BRAINS), 2021, pp. 229–236. doi: 10.1109/BRAINS52497.2021.

9569819.

[116] K. Nelaturu, A. Mavridou, A. Veneris, and A. Laszka, Open-source implementation of ex-

tended VeriSolid, https://github.com/smartcontractsfc/verifier, Accessed on 12/19/2019.

[117] T. D. Nguyen, L. H. Pham, and J. Sun, “SGUARD: towards fixing vulnerable smart contracts

automatically,” in 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco,

CA, USA, 24-27 May 2021, IEEE, 2021, pp. 1215–1229. doi: 10.1109/SP40001.2021.00057.

[Online]. Available: https://doi.org/10.1109/SP40001.2021.00057.

https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1145/2976749.2978399
https://blog.goodaudience.com/new-erc20-batchoverflow-bug-2cd191668f0d
https://blog.goodaudience.com/new-erc20-batchoverflow-bug-2cd191668f0d
https://doi.org/10.1109/BRAINS52497.2021.9569791
https://doi.org/10.1109/BRAINS52497.2021.9569791
https://arxiv.org/abs/2005.05912
http://www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/BRAINS52497.2021.9569819
https://doi.org/10.1109/BRAINS52497.2021.9569819
https://github.com/smartcontractsfc/verifier
https://doi.org/10.1109/SP40001.2021.00057
https://doi.org/10.1109/SP40001.2021.00057

BIBLIOGRAPHY 58

[118] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the greedy, prodigal, and

suicidal contracts at scale,” in Proceedings of the 34th Annual Computer Security Applications

Conference, ACSAC 2018, San Juan, PR, USA, December 03-07, 2018, ACM, 2018, pp. 653–

663. doi: 10.1145/3274694.3274743. [Online]. Available: https://doi.org/10.1145/

3274694.3274743.

[119] U. Norell, “Dependently typed programming in agda,” Jan. 2009, pp. 1–2, isbn: 978-3-642-

04651-3. doi: 10.1007/978-3-642-04652-0_5.

[120] Numen Cyber Labs, Analysis of the first critical vulnerability of aptos move vm, Medium,

Oct. 2022. [Online]. Available: https://medium.com/numen-cyber-labs/analysis-of-

the-first-critical-0-day-vulnerability-of-aptos-move-vm-8c1fd6c2b98e.

[121] Numen Cyber Labs, The story of a high-risk vulnerability in move reference safety verify

module, Numen, Accessed on 07/25/2023. [Online]. Available: https://www.numencyber.

com/the-story-of-a-high-risk-vulnerability-in-move-reference-safety-verify-

module/.

[122] OpenZepellin, https://openzeppelin.com/, Accessed on 06/14/2023.

[123] OpenZepellin, Safemath, https://docs.openzeppelin.com/contracts/2.x/api/math,

Accessed on 07/31/2023.

[124] M. Ortner and S. Eskandari, “Smart contract sanctuary,” [Online]. Available: https://

github.com/tintinweb/smart-contract-sanctuary.

[125] p0n1, A disastrous vulnerability found in smart contracts of beautychain (bec), https://

medium.com/secbit-media/a-disastrous-vulnerability-found-in-smart-contracts-

of-beautychain-bec-dbf24ddbc30e, Apr. 2018.

[126] S. Palladino, The parity wallet hack explained, https://blog.openzeppelin.com/on-the-

parity-wallet-multisig-hack-405a8c12e8f7, Jul. 2017.

[127] Parity bug: Trigger, Accessed 08/02/2023. [Online]. Available: https://etherscan.io/

address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4%5C#code.

[128] L. C. Paulson, Isabelle: A Generic Theorem Prover. Springer Verlag, 1994.

[129] L. C. Paulson, Natural deduction as higher-order resolution, 2000. arXiv: cs/9301104 [cs.LO].

[130] A. Permenev, D. K. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and M. T. Vechev, “Verx:

Safety verification of smart contracts,” in 2020 IEEE Symposium on Security and Privacy,

SP 2020, San Francisco, CA, USA, May 18-21, 2020, IEEE, 2020, pp. 1661–1677. doi: 10.

1109/SP40000.2020.00024. [Online]. Available: https://doi.org/10.1109/SP40000.

2020.00024.

[131] O. Porkka, “Attacks on smart contracts,” Master’s thesis, University of Helsinki, 2022.

[132] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and

public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–126, Feb. 1978, issn:

0001-0782. doi: 10.1145/359340.359342. [Online]. Available: https://doi.org/10.1145/

359340.359342.

https://doi.org/10.1145/3274694.3274743
https://doi.org/10.1145/3274694.3274743
https://doi.org/10.1145/3274694.3274743
https://doi.org/10.1007/978-3-642-04652-0_5
https://medium.com/numen-cyber-labs/analysis-of-the-first-critical-0-day-vulnerability-of-aptos-move-vm-8c1fd6c2b98e
https://medium.com/numen-cyber-labs/analysis-of-the-first-critical-0-day-vulnerability-of-aptos-move-vm-8c1fd6c2b98e
https://www.numencyber.com/the-story-of-a-high-risk-vulnerability-in-move-reference-safety-verify-module/
https://www.numencyber.com/the-story-of-a-high-risk-vulnerability-in-move-reference-safety-verify-module/
https://www.numencyber.com/the-story-of-a-high-risk-vulnerability-in-move-reference-safety-verify-module/
https://openzeppelin.com/
https://docs.openzeppelin.com/contracts/2.x/api/math
https://github.com/tintinweb/smart-contract-sanctuary
https://github.com/tintinweb/smart-contract-sanctuary
https://medium.com/secbit-media/a-disastrous-vulnerability-found-in-smart-contracts-of-beautychain-bec-dbf24ddbc30e
https://medium.com/secbit-media/a-disastrous-vulnerability-found-in-smart-contracts-of-beautychain-bec-dbf24ddbc30e
https://medium.com/secbit-media/a-disastrous-vulnerability-found-in-smart-contracts-of-beautychain-bec-dbf24ddbc30e
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4%5C#code
https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4%5C#code
https://arxiv.org/abs/cs/9301104
https://doi.org/10.1109/SP40000.2020.00024
https://doi.org/10.1109/SP40000.2020.00024
https://doi.org/10.1109/SP40000.2020.00024
https://doi.org/10.1109/SP40000.2020.00024
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342

BIBLIOGRAPHY 59

[133] K. Y. Rozier, “Linear temporal logic symbolic model checking,” Computer Science Review,

vol. 5, no. 2, pp. 163–203, 2011, issn: 1574-0137. doi: https://doi.org/10.1016/j.cosrev.

2010.06.002. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S1574013710000407.

[134] J. Rushby, “Tutorial: Automated formal methods with pvs, sal, and yices,” in Fourth IEEE

International Conference on Software Engineering and Formal Methods (SEFM’06), 2006,

pp. 262–262. doi: 10.1109/SEFM.2006.37.

[135] N. F. Samreen and M. H. Alalfi, “Reentrancy vulnerability identification in ethereum smart

contracts,” in 2020 IEEE International Workshop on Blockchain Oriented Software Engi-

neering (IWBOSE), IEEE, Feb. 2020. doi: 10.1109/iwbose50093.2020.9050260. [Online].

Available: https://doi.org/10.1109%2Fiwbose50093.2020.9050260.

[136] S. Schulz, “E - a brainiac theorem prover,” AI Commun., vol. 15, no. 2,3, pp. 111–126, Aug.

2002, issn: 0921-7126.

[137] K. Sekniqi, D. Laine, S. Buttolph, and E. G. Sirer, “Avalanche platform,” vol. 1, Jun. 2020.

[138] I. Sergey, A. Kumar, and A. Hobor, “Temporal properties of smart contracts,” in Leveraging

Applications of Formal Methods, Verification and Validation. Industrial Practice - 8th Inter-

national Symposium, ISoLA 2018, Limassol, Cyprus, November 5-9, 2018, Proceedings, Part

IV, T. Margaria and B. Ste↵en, Eds., ser. Lecture Notes in Computer Science, vol. 11247,

Springer, 2018, pp. 323–338. doi: 10.1007/978-3-030-03427-6_25. [Online]. Available:

https://doi.org/10.1007/978-3-030-03427-6%5C_25.

[139] B. Severin, M. Hesenius, F. Blum, M. Hettmer, and V. Gruhn, “Smart money wasting: An-

alyzing gas cost drivers of ethereum smart contracts,” in 2022 IEEE International Confer-

ence on Software Maintenance and Evolution (ICSME), 2022, pp. 293–304. doi: 10.1109/

ICSME55016.2022.00034.

[140] C. Signer, “Gas cost analysis for ethereum smart contracts,” M.S. thesis, ETH Zürich, De-

partment of Computer Science, 2018.

[141] C. Smith, Smart contract security, https://ethereum.org/en/developers/docs/smart-

contracts/security/, Accessed 07/31/2023., Jun. 2023.

[142] Solana, Transaction fees, https://docs.solana.com/transaction_fees, Accessed on

07/26/2023., 2023.

[143] Solidity, Solidity by example: Blind auction, https://solidity.readthedocs.io/en/

develop/solidity-by-example.html#blind-auction/, Accessed on 06/21/2022., 2022.

[144] Solidity, https://docs.soliditylang.org/en/v0.8.15/, Accessed 05/21/2023.

[145] “Solidity documentation (release 0.8.16),” Ethereum, Tech. Rep., 2022.

[146] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing in bitcoin,” Jan.

2015, isbn: 978-3-662-47853-0. doi: 10.1007/978-3-662-47854-7_32.

[147] Starcoin, https://starcoin.org/en/, Accessed on 04/13/2022., 2022.

[148] Sui, https://sui.io/, Accessed on 04/13/2022., 2022.

[149] Sui, Sui gas fees, https://docs.sui.io/build/sui-gas-charges, Accessed on 07/26/2023.,

2023.

https://doi.org/https://doi.org/10.1016/j.cosrev.2010.06.002
https://doi.org/https://doi.org/10.1016/j.cosrev.2010.06.002
https://www.sciencedirect.com/science/article/pii/S1574013710000407
https://www.sciencedirect.com/science/article/pii/S1574013710000407
https://doi.org/10.1109/SEFM.2006.37
https://doi.org/10.1109/iwbose50093.2020.9050260
https://doi.org/10.1109%2Fiwbose50093.2020.9050260
https://doi.org/10.1007/978-3-030-03427-6%5C_25
https://doi.org/10.1109/ICSME55016.2022.00034
https://doi.org/10.1109/ICSME55016.2022.00034
https://ethereum.org/en/developers/docs/smart-contracts/security/
https://ethereum.org/en/developers/docs/smart-contracts/security/
https://docs.solana.com/transaction_fees
https://solidity.readthedocs.io/en/develop/solidity-by-example.html#blind-auction/
https://solidity.readthedocs.io/en/develop/solidity-by-example.html#blind-auction/
https://docs.soliditylang.org/en/v0.8.15/
https://doi.org/10.1007/978-3-662-47854-7_32
https://starcoin.org/en/
https://sui.io/
https://docs.sui.io/build/sui-gas-charges

BIBLIOGRAPHY 60

[150] J. Sun, Y. Liu, and J. S. Dong, “Model checking csp revisited: Introducing a process analysis

toolkit,” in Leveraging Applications of Formal Methods, Verification and Validation, T. Mar-

garia and B. Ste↵en, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 307–322,

isbn: 978-3-540-88479-8.

[151] Y. Sun, B. Yan, Y. Yao, and J. Yu, “Dt-dpos: A delegated proof of stake consensus algo-

rithm with dynamic trust,” Procedia Computer Science, vol. 187, pp. 371–376, 2021, 2020

International Conference on Identification, Information and Knowledge in the Internet of

Things, IIKI2020, issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.2021.

04.113. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S1877050921009236.

[152] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang, “Secure distributed

programming with value-dependent types,” in Proceedings of the 16th ACM SIGPLAN Inter-

national Conference on Functional Programming, ser. ICFP ’11, Tokyo, Japan: Association

for Computing Machinery, 2011, pp. 266–278, isbn: 9781450308656. doi: 10.1145/2034773.

2034811. [Online]. Available: https://doi.org/10.1145/2034773.2034811.

[153] Swc-114: Transaction order dependence. 2021. [Online]. Available: https://swcregistry.

io/docs/SWC-114.

[154] SWC-registry, https://swcregistry.io/, Accessed on 06/21/2022., 2022.

[155] N. Szabo, Bit gold, http://unenumerated.blogspot.com/2005/12/bit-gold.html, 2005.

[156] The Aptos Labs Team, “The Aptos Blockchain: Safe, Scalable, and Upgradeable Web3 In-

frastructure,” Aptos Labs, Tech. Rep., Aug. 2022.

[157] The history of ethereum, https://ethereum.org/en/history/, Accessed 07/31/2023., Jul.

2023.

[158] The rust programming language - understanding ownership, https://doc.rust-lang.org/

book/ch04-00-understanding-ownership.html, Accessed 05/21/2023., 2023.

[159] Thedao token, Accessed 08/02/2023. [Online]. Available: https://etherscan.io/address/

0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4%5C#code.

[160] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and Y. Alexan-

drov, “Smartcheck: Static analysis of ethereum smart contracts,” in 2018 IEEE/ACM 1st

International Workshop on Emerging Trends in Software Engineering for Blockchain (WET-

SEB), 2018, pp. 9–16.

[161] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and Y. Alexan-

drov, “Smartcheck: Static analysis of ethereum smart contracts,” in 1st IEEE/ACM In-

ternational Workshop on Emerging Trends in Software Engineering for Blockchain, WET-

SEB@ICSE 2018, Gothenburg, Sweden, May 27 - June 3, 2018, ACM, 2018, pp. 9–16. [On-

line]. Available: https://ieeexplore.ieee.org/document/8445052.

[162] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer bugs in ethereum smart

contracts,” in Proceedings of the 34th Annual Computer Security Applications Conference,

ser. ACSAC ’18, San Juan, PR, USA: Association for Computing Machinery, 2018, pp. 664–

676, isbn: 9781450365697. doi: 10.1145/3274694.3274737. [Online]. Available: https:

//doi.org/10.1145/3274694.3274737.

https://doi.org/https://doi.org/10.1016/j.procs.2021.04.113
https://doi.org/https://doi.org/10.1016/j.procs.2021.04.113
https://www.sciencedirect.com/science/article/pii/S1877050921009236
https://www.sciencedirect.com/science/article/pii/S1877050921009236
https://doi.org/10.1145/2034773.2034811
https://doi.org/10.1145/2034773.2034811
https://doi.org/10.1145/2034773.2034811
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/
http://unenumerated.blogspot.com/2005/12/bit-gold.html
https://ethereum.org/en/history/
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4%5C#code
https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4%5C#code
https://ieeexplore.ieee.org/document/8445052
https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1145/3274694.3274737

BIBLIOGRAPHY 61

[163] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer bugs in ethereum smart

contracts,” in Proceedings of the 34th Annual Computer Security Applications Conference,

ACSAC 2018, San Juan, PR, USA, December 03-07, 2018, ACM, 2018, pp. 664–676. doi:

10.1145/3274694.3274737. [Online]. Available: https://doi.org/10.1145/3274694.

3274737.

[164] P. Tsankov, A. M. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and M. T. Vechev,

“Securify: Practical security analysis of smart contracts,” in Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON,

Canada, October 15-19, 2018, D. Lie, M. Mannan, M. Backes, and X. Wang, Eds., ACM,

2018, pp. 67–82. doi: 10.1145/3243734.3243780. [Online]. Available: https://doi.org/

10.1145/3243734.3243780.

[165] U.S. Securities and Exchange Commission (SEC), “Report of investigation pursuant to section

21(a) of the securities exchange act of 1934: The DAO,” Tech. Rep., 2017. [Online]. Available:

https://www.sec.gov/files/litigation/investreport/34-81207.pdf.

[166] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work vs. bft replication,” in

Open Problems in Network Security, J. Camenisch and D. Kesdoğan, Eds., Cham: Springer

International Publishing, 2016, pp. 112–125, isbn: 978-3-319-39028-4.

[167] Q. Wang, R. Li, Q. Wang, S. Chen, and Y. Xiang, Exploring unfairness on proof of authority:

Order manipulation attacks and remedies, 2022. arXiv: 2203.03008 [cs.CR].

[168] Y. Wang et al., “Formal verification of workflow policies for smart contracts in azure blockchain,”

in Verified Software. Theories, Tools, and Experiments - 11th International Conference,

VSTTE 2019, New York City, NY, USA, July 13-14, 2019, Revised Selected Papers, S.

Chakraborty and J. A. Navas, Eds., ser. Lecture Notes in Computer Science, vol. 12031,

Springer, 2019, pp. 87–106. doi: 10.1007/978-3-030-41600-3_7. [Online]. Available:

https://doi.org/10.1007/978-3-030-41600-3%5C_7.

[169] R. Wille, G. Fey, M. Messing, G. Angst, L. Linhard, and R. Drechsler, “Identifying a subset of

system verilog assertions for e�cient bounded model checking,” in 2008 11th EUROMICRO

Conference on Digital System Design Architectures, Methods and Tools, 2008, pp. 542–549.

doi: 10.1109/DSD.2008.53.

[170] G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum

project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.

[171] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hotstu↵: Bft consensus with

linearity and responsiveness,” in Proceedings of the 2019 ACM Symposium on Principles of

Distributed Computing, ser. PODC ’19, Toronto ON, Canada: Association for Computing Ma-

chinery, 2019, pp. 347–356, isbn: 9781450362177. doi: 10.1145/3293611.3331591. [Online].

Available: https://doi.org/10.1145/3293611.3331591.

[172] G. Zhang and H.-A. Jacobsen, “Prosecutor: An e�cient bft consensus algorithm with behavior-

aware penalization against byzantine attacks,” in Proceedings of the 22nd International Mid-

dleware Conference, ser. Middleware ’21, Québec city, Canada: Association for Computing

Machinery, 2021, pp. 52–63, isbn: 9781450385343. doi: 10.1145/3464298.3484503. [Online].

Available: https://doi.org/10.1145/3464298.3484503.

https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3243734.3243780
https://www.sec.gov/files/litigation/investreport/34-81207.pdf
https://arxiv.org/abs/2203.03008
https://doi.org/10.1007/978-3-030-41600-3%5C_7
https://doi.org/10.1109/DSD.2008.53
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3464298.3484503
https://doi.org/10.1145/3464298.3484503

BIBLIOGRAPHY 62

[173] G. Zhang and H.-A. Jacobsen, Escape to precaution against leader failures, 2022. arXiv:

2202.09434 [cs.DC].

[174] G. Zhang and C. Xu, “An e�cient consensus protocol for real-time permissioned blockchains

under non-byzantine conditions,” in Green, Pervasive, and Cloud Computing, S. Li, Ed.,

Cham: Springer International Publishing, 2019, pp. 298–311, isbn: 978-3-030-15093-8.

[175] J. E. Zhong et al., “The move prover,” in International Conference on Computer Aided

Verification, Springer, 2020, pp. 137–150.

https://arxiv.org/abs/2202.09434

	Introduction
	Motivation
	Contributions
	VeriMove: A Model Checking Framework for the Move Language
	Gas Optimization of Move Smart Contracts
	Automated Auditing of Price Gouging TOD Vulnerabilities

	Thesis Outline

	Background
	Introduction
	Blockchain
	Properties of Cryptocurrency and Early Systems
	Blockchain Fundamentals
	Block Contents
	Consensus Algorithms

	The Ethereum Blockchain
	Accounts
	Smart Contracts
	Gas

	The Move Language
	Global Ledger State
	Smart Contracts
	Memory Management
	Struct Abilities
	Resources
	Built-In Verification

	Formal Methods
	Theorem Proving
	Model Checking

	VeriMove: A Model Checking Framework for the Move Language
	Introduction
	Related Work
	Comparison of Move and Solidity
	Global Storage and Local Memory Management
	Transfers
	Trade-Offs

	Blind Auction: A Motivating Example
	VeriMove: Design and Verification Workflow
	VeriSolid
	Language Parser
	Finite State Machine Generator
	Augmented Transition System
	VeriMove Workflow

	Operational Semantics for Move
	Empirical Evaluation
	Implementation
	Experimental Setup
	Results
	Discussion and Limitations

	Conclusion

	Gas Optimization of Move Smart Contracts
	Introduction
	The Aptos Gas Meter
	Payload Gas
	Instruction Gas
	Storage Gas

	Related Work
	Gas Optimization Patterns
	Payload Gas
	Instruction Gas
	Storage Gas

	Non-optimization
	Experiments
	Conclusion

	Automated Auditing of TOD Vulnerabilities
	Introduction
	Background and Motivating Example
	The Cause of a TOD Vulnerability
	The Price Gouging TOD Vulnerability
	Locating TOD Vulnerabilities
	Rectifying TOD Vulnerabilities

	Analysis Approach
	Location Algorithm
	Rectification Algorithm

	Empirical Evaluation
	Implementation and Experimental Setup
	DataSet Collection
	Results
	Limitations and Discussion

	Related Work
	Analysis of Smart Contracts
	Automated Repairs of Smart Contracts
	Functional Verification of Smart Contracts

	Conclusion

	Conclusion and Future Work
	Contributions
	Future Work

